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Abstract

This manuscript completes the analysis of our SIGGRAPH 2013
paper [Levin et al. 2013], ”Fabricating BRDFs at High Spatial Res-
olution Using Wave Optics” in which photolithography fabrication
was used for manipulating reflectance effects. While photolithog-
raphy allows for precise reflectance control, it is costly to fabricate.
Here we explore an inexpensive alternative to micro-fabrication, in
the form of metallic powders. Such powders are readily available
at a variety of particle sizes and morphologies. Using an analysis
similar to the micro-fabrication paper, we provide guidelines for the
relation between the particles’ shape and size and the reflectance
functions they can produce.

Keywords: Fabrication, metallic powders, BRDF design, wave
optics.

1 Powder-Based Reflectance

Photolithography allows precise control over micro-scale shape, but
it is relatively costly for low production numbers, and it restricts
fabrication to planar substrates. Thus, in order to complement the
preceding analysis, we follow Johnson et al. [2011] and investigate
the use of metallic powders for controlling appearance. These pro-
vide much cruder manipulation of reflectance, but they are a flexible
and inexpensive alternative to photolithography. Metallic particles
are available at a variety of morphologies and sizes, and they are
relatively inexpensive. Typical prices are a few dollars per gram,
with a single gram sufficient to cover a relatively large surface area.

It is quite challenging to model the exact arrangement in which par-
ticles lie when deposited onto substrate, because it depends on the
method of application, the substrate properties, and various elec-
trostatic forces. This section presents a model that expresses the
surface as an assembly of independent copies of any basic shape,
while ignoring occlusions and masking between nearby particles.
While this model is very simple, we find that it is able to explain
some of the observed phenomena.

Planar flakes: When a metallic powder consists of particles that
are flat and wide flakes, these flakes will often be arranged into
piecewise linear microstructures that can be approximated using
the piecewise-flat model of Sect. 3. Thus, according to Claim
1 of [Levin et al. 2013] these powders produce glossy reflectance
with the angular extent of the glossy lobe determined by the width
of the flakes. An example of a flake-based powder is depicted in
(Fig. 1(b-c)). These flakes are planar particles whose thickness is

Figure 2: The parameterization of a spheres surface.

about100−200nm and whose area is a few microns wide. A vari-
ety of sizes are commercially available. By selecting flake widths,
we can approximately control the reflectance as described in [Levin
et al. 2013]. An advantage of this flake-based approach is that since
the number of depth values is not limited to a finite set, we can al-
most always achieve a pure glossy reflectance that does not contain
any specular spike.

General particle morphologies: In a powder-based approach
we are not restricted to flake-shaped particles. Many morpholo-
gies are available, including the spherical particles used by Johnson
et. al [2011] for photometric stereo depth sensing. A SEM view of
such a spherical powder is shown in Fig. 1(a).

We model the surface as being composed of copies of a basic shape
ϑ(x). Until this point we dealt with piecewise flat surfaces, corre-
sponding to a constantϑ. However,ϑ(x) can encode other shapes,
for example spheres. We denote byϑxj ,aj a copy ofϑ centered at
xj and scaled to widthaj . Since the thickness of the sphere layer
is not uniform we model the height of each particle as a random
variable denotedzj . The parameterization is illustrated in Figure 2.
The overall height field is given by

z(x) =
∑

j

(φxj ,aj + zj)Πxj ,aj (1)

Where the multiplication byΠxj ,aj in Eq. (1) is included to empha-
size that thej’th particle area is limited to the corresponding local
window.

Sampling Process 1Sample i.i.d copies of a particle shapeϑ.
Particle centersxj are distributed uniformly over the surface area,
particle sizes and heights are sampled independently from distribu-
tionspa, pz.

As in [Levin et al. 2013], assumingΔd � Δc it is enough to com-
pute the expected reflectance.

Claim 1 Consider a surface modulation functiona whose phase
is the height field sampled according to Sampling Process 1. The
expected reflectance is given by:

RE(h) = E [I(2hx/λ)] (2)

with

E [I(ωx)] ≈ (3)

(1 − |τ |2)Epa

[
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∣
∣
∣Φ
( ωx

a−1

)∣∣
∣
2
]

+ |τ |2%Π
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ωx

Δ−1
c

)

(4)
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Figure 1: A scanning electron microscope view of a photo-lithography surface and of three types of silver powders.
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Figure 3: Reflectance of silver powders. First row: An image of
a cylindrical object covered with each type of powder, taken under
white illumination (intensities cropped at 1). Second row: plot of
the mean intensity in each column of the above.

whereΦ(ωx) denotes the Fourier transform of

φ(x) = e−ik2hzϑ(x), τ = Epz [e−ik2hzzj ] (5)

and% is a scaler defined in Appendix A.

We defer the proof to Appendix A. The result is very similar to the
one derived in Claim 1 of [Levin et al. 2013], except that thesinc
which represents in this claim the Fourier transform of the basic
rect shape, is now replaced withΦ, the Fourier transform of a signal
whose phase is the basic shapeϑ.

Applying this result to the case of spherical particles,Φ is the
Fourier transform of a signalφ whose phase is a sphere. While
this spectrum cannot be computed in closed form, a numerical cal-
culation shows that it is almost flat. Intuitively, this result makes
sense. Since the normals of a sphere are distributed equally in all
orientations and hence, at least under a geometric optics model, it
reflects light equally in all directions. The claim implies that the
reflectance of a surface composed of spherical particles is a linear
combination of a diffuse reflectance with a mirror reflectance. No
other lobe type can be produced. This result is in agreement with
the observations of [Johnson et al. 2011].

Note, that spheres lead to diffuse reflectance, regardless of the
sphere particle size. In contrast, flakes lead to a metallic lobe
reflectance where the lobe width is inherently dependent on the
flakes’ width. Flakes whose size is on the order of the wavelength
(∼ 0.5μm) will result in diffuse reflectance, as explained in the dis-
cussion of physical step sizes and their corresponding lobe widths
in [Levin et al. 2013].

2 Reflectance Measurements

Figure 1 shows an electron microscope scan of two silver flake pow-
ders1 with different sized particles (mean particle width of∼ 3μm
and∼ 6μm) as well as a spherical powder (mean particle diame-
ter∼0.5μm). To measure the reflectance we brushed the powders
manually over a VHB transparent tape, wrapped the tape around a
cylinder and illuminated it using a distant source. The resulting im-
ages can be seen in the first row of Figure 3. The second row of that
figure shows a plot of the mean intensity as a function of the hori-
zontal image position. As predicted by our analysis in Sec. 1 wider
silver flakes generate a more glossy appearance. The spherical par-
ticles lead to a diffuse appearance with a narrow mirror spike. We
can observe an additional shifted spike in the spheres cylinder im-
age, since some of the light is transmitted into the tape layer and
refracted back.

Metallic powders and the GelSight sensor: Figure 4 provides
an additional comparison of these powder-based reflectances in the
context of the elastomeric GelSight2 sensor of Johnson et al. [2011].
This sensor is a slab of clear elastomer coated a with a metallic pow-
der skin. When an object is pressed into the sensor, the reflective
skin conforms to the shape of the object surface. Viewed through
the elastomer, the surface appears to be painted by the reflective
skin. This property allows for photometric stereo algorithms to be
used to estimate the shape of the surface.

Johnson et al. [2011] invested much effort in searching for a powder
with desirable properties. In the absence of a theory for predicting
the reflectance properties of different particles, it was not clear how
to find the best one. Commercial metallic paints which were ex-
plored in [Johnson and Adelson 2009] are composed of relatively
large particles, limiting resolution. In the second generation of their
sensor Johnson et al. [2011] used a spherical powder which pro-
duces a diffuse reflectance. As explained by the authors, matte re-
flectance is disadvantageous because it yields a low-contrast shad-
ing image that translates to a lower signal-to-noise ratio (SNR)
when inferring surface normals and surface shape via photometric
stereo. They mitigate this effect using grazing-angle illumination,
which substantially complicates the required reconstruction algo-
rithm because of induced shadows and uneven lighting.

Our analysis explains these effects, and it provides intuition that
may enable future improvements in the shape resolution that can be
achieved by elastomeric sensing. The analysis of Sec. 1 shows that
the diffuse reflectance observed by Johnson et al. [2011] is caused
by the spherical shape of the particles, and that this cannot be over-
come without changing the particle shape. The same analysis shows
that metallic flakes produce glossy reflectance that increases shad-
ing contrast. This suggests that flake-like shapes might make better

1Product of Ames Goldsmith
2http://www.gelsight.com/



coatings by enabling more robust reconstruction via direct lighting
without shadows, and an increase in angular SNR.

To demonstrate this, Figure 4 compares our three metallic powders
in an elastomeric sensing configuration. Under direct illumination
the diffuse reflectance of the spherical powder produce low-contrast
images, and surface detail can only be discerned when the light is
moved to a grazing direction. In contrast, the flake-based powders
produce glossy reflectance and high-contrast images, even when the
lighting is near-frontal.

A Proof of reflectance properties

We now move to prove claim 1, which is a rather immediate gener-
alization of claim 1 of [Levin et al. 2013], obtained when replacing
the sinc withΦ, the Fourier transform of a general particle shape.

Claim 3 Consider a surface modulation functiona whose phase
is the height field sampled according to Sampling Process 1. The
expected reflectance is given by

RE(h) = E [I(2hx/λ)] (6)

with

E [I(ωx)] ≈ (7)

(1 − |τ |2)Epa

[

a2 ∙
∣
∣
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)∣∣
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2
]

+ |τ |2%Π

(
ωx

Δ−1
c

)

(8)

whereΦ(ωx) denotes the Fourier transform of

φ(x) = e−ik2hzϑ(x). (9)

τ = Epz [e−ik2hzzj ] (10)

ς = Epa

[∫ a/2

−a/2

φ(x/a)dx

]

(11)

and% = ς2ΔcEpa [a]

Proof of claim 3: To computeE[I(ωx)] we first compute the ex-
pectation of the unblurred power spectrumE[|A(ωx)|2], and then,
by the linearity of the expectation:

E[I(ωx)] = E[|A(ωx)|2] ⊗ Π0,Δa/λ. (12)

That is,E[I(ωx)] is obtained by blurringE[|A(ωx)|2].

We compute the expectation in two steps, first we think of step cen-
ters and widthsxj , aj as observed values and compute the expected
spectrum over all possible depth assignmentszj sampled indepen-
dently frompz. In the second step we compute expectations with
respect toxj , aj .

Let n denote the number of steps averaged inside a dot

n =
Δd

Epa [a]
(13)

We define a set of random variables associated with the surface
modulation function at each of the particles:

ψj = e
−ik2hz(zj+φxj,aj

)
Πxj ,aj . (14)

In the above notation we multiply the phase signal with the rect
function Πxj ,aj to emphasis the fact that this random variable is
zero outsize a segment of widthaj centered atxj . The random

variableψj is a scaled and shifted version of the basic unit modu-
lation functionφ defined in Eq. (9) and we can write:

ψj(x) = e−ik2hzzj φ

(
x − xj

aj

)

(15)

We denote the Fourier transforms of the random variablesψj by
Ψj , and in a similar way, they can be related to the basic unitΦ via
scaling and phase shift:

Ψj(ωx) = e−2πi(xjωx+
2hzzj

λ
)ajΦ

(
ωx

a−1
j

)

(16)

We can express the surface modulation function and its Fourier
transform as a sum of the random variables representing each com-
ponentΨj . Thus,

a =
n∑

j=1

ψj A =
n∑

j=1

Ψj . (17)

We can express the expected power spectrum as a sum of two terms,
variance and squared mean. Using the fact that for a fixed sample
of xj , aj , Ψj are independent random variables we get:

Epz [|A|2] =
n∑

j=1

Epz

[
|Ψj − Epz [Ψj ]|

2]+

∣
∣
∣
∣
∣

n∑

j=1

Epz [Ψj ]

∣
∣
∣
∣
∣

2

(18)

The variance term (first term in Eq. (18)) gives rise to the|Φ|2 part
of the reflectance, the first term of Eq. (8), while the squared mean
term (second term in Eq. (18)) leads to the impulse part of the re-
flectance, the second term of Eq. (8).

We start by computing the variance term. Taking expectations with
respect topz we note

Epz [Ψj ] = τe−2πi(xjωx)ajΦ(ωxaj) (19)

Thus

Epz

[
|Ψj−Epz [Ψj ]|

2]=Epz

[∣
∣
∣e−ik2hzzj −τ

∣
∣
∣
2
]

a2
j |Φ(ωxaj)|

2

(20)

Using
∣
∣e−ik2hzzj

∣
∣2 = 1 andEpz

[
e−ik2hzzj

]
= τ we get:

Epz

[∣
∣
∣e−ik2hzzj − τ

∣
∣
∣
2
]

= (1 − |τ |2) (21)

hence

Epz

[
|Ψj − Epz [Ψj ]|

2] = (1 − |τ |2)a2
j |Φ(ωxaj)|

2 (22)

The expression in Eq. (22) does no longer depend on the centers
xj . After taking the expectation with respect toaj we see that the
variance term is indeed equal to the first term in Equation Eq. (8):

n∑

j=1

E
[
|Ψj − E[Ψj ]|

2] = n(1 − |τ |2)Epa

[

a2 ∙
∣
∣
∣Φ
( ωx

a−1

)∣∣
∣
2
]

(23)

We now compute the second part of Eq. (18), the squared mean.

Due to the linearity of the Fourier transform
∑n

j=1 E[Ψj ] is the
Fourier transform of

∑n
j=1 E[ψj ] = E[

∑n
j=1 ψj ].



Since the sampling process is shift invariant we have an equal prob-
ability to see any part of a random variable at anyx location. Thus
Epz ,pa [

∑n
j=1 ψj(x)] is a flat signal which does not depend on the

locationx. It is easy to see that:

Epz ,pa

[
n∑

j=1

ψj(x)

]

= Epz

[
n∑

j=1

eikhzzj

]

Epa

[
n∑

j=1

φ(x/a)

]

= τς

(24)

Thus, the Fourier transform of the mean over a spatial supportΔd

is a narrowsinc around the zero frequency:

n∑

j=1

E[Ψj ] = τςΔdsinc

(
ωx

Δ−1
d

)

(25)

Substituting Eqs. (25) and (23) in Eq. (18) yields

E
[
|A(ωx)|2

]
≈ (26)

n(1 − |τ |2)Epa

[
a2 ∙sinc2

( ωx

a−1

)]
+ |τς|2Δ2

dsinc2

(
ωx

Δ−1
d

)

(27)

To conclude the proof, we need to computeE [I(ωx)] from
E
[
|A(ωx)|2

]
. We follow Eq. (12) and blurE

[
|A(ωx)|2

]
with a

rect of widthΔ−1
c = Δa/λ. The first term of Eq. (27) is relatively

smooth and we assume it does not change that much by blurring,
that is:

n(1 − |τ |2)Epa

[

a2 ∙
∣
∣
∣Φ
( ωx

a−1

)∣∣
∣
2
]

⊗ Π
0,Δ−1

c
≈

n(1 − |τ |2)Epa

[

a2 ∙
∣
∣
∣Φ
( ωx

a−1

)∣∣
∣
2
]

(28)

The second term of Eq. (27) is a very narrow sinc of widthΔ−1
d .

Assuming thatΔd � Δc, thenΔ−1
c � Δ−1

d . Hence, convolving
the narrow sinc with the wider rect of widthΔ−1

c results roughly in
a rect of widthΔ−1

c

sinc2

(
ωx

Δ−1
d

)

⊗ Π
0,Δ−1

c
≈

Δ−1
d

Δ−1
c

Π
0,Δ−1

c
. (29)

We further useΔd = nEpa [a] (Eq. (13)) and get

|τ |2Δ2
dsinc2

(
ωx

Δ−1
d

)

⊗ Π
0,Δ−1

c
≈ n|τς|2ΔcEpa [a]Π

0,Δ−1
c

(30)
Combining Eqs. (28) and (30) yields the desired result (Eq. (8)) up
to a global scaling factor:

E [I(ωx)] ≈ (31)

n(1 − |τ |2)Epa

[

a2 ∙
∣
∣
∣Φ
( ωx

a−1

)∣∣
∣
2
]

+ n|τ |2%Π

(
ωx

Δ−1
c

)

(32)
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Figure 4: Images of a U.S. quarter via a transparent elastomer
pressed into different types of powders. The left column shows im-
ages taken with direct illumination. The images in the right col-
umn were taken with grazing angle illumination. Spherical pow-
ders have a diffuse reflectance and lack contrast under direct illu-
mination, surface details are seen only when grazing illumination
is used. Flake powders have a metallic reflectance and reveal much
more information about surface orientation.
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