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Abstract

Aquatic locomotion is a classic fluid-structure in-
teraction (FSI) problem of interest to biologists
and engineers. Solving the fully coupled FSI equa-
tions for incompressible Navier-Stokes and finite
elasticity is computationally expensive. Optimiz-
ing robotic swimmer design within such a sys-
tem generally involves cumbersome, gradient-free
procedures on top of the already costly simula-
tion. To address this challenge we present a novel,
fully differentiable hybrid approach to FSI that
combines a 2D direct numerical simulation for
the deformable solid structure of the swimmer
and a physics-constrained neural network surro-
gate to capture hydrodynamic effects of the fluid.
For the deformable solid simulation of the swim-
mer’s body, we use state-of-the-art techniques
from the field of computer graphics to speed up
the finite-element method (FEM). For the fluid
simulation, we use a U-Net architecture trained
with a physics-based loss function to predict the
flow field at each time step. The pressure and
velocity field outputs from the neural network
are sampled around the boundary of our swim-
mer using an immersed boundary method (IBM)
to compute its swimming motion accurately and
efficiently. We demonstrate the computational
efficiency and differentiability of our hybrid sim-
ulator on a 2D carangiform swimmer. Due to
differentiability, the simulator can be used for
computational design of controls for soft bodies
immersed in fluids via direct gradient-based opti-
mization.
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1. Introduction
Soft robotics is a rapidly advancing branch of robotics,
showing promising results in non-standard settings in which
compliant structures and bio-inspired designs are needed to
solve tasks in natural environments (Hawkes et al., 2021).
Aquatic locomotion is one such setting where soft robotic
designs are uniquely able to take advantage of hydrody-
namic properties, mimicking biological fish designs selected
through evolutionary pressures for maximum fitness in na-
ture (Katzschmann et al., 2018).

Simulation is a non-trivial challenge in the design of soft
robots, as opposed to the rigid domain, for which estab-
lished techniques have been developed and built upon in the
span of decades. As for aquatic locomotion, solving fluid-
structure interaction (FSI) for incompressible Navier-Stokes
is a hard problem, traditionally extremely computationally
expensive and thus often impossible in practice. Leveraging
these simulations for design and control optimization gener-
ally involves an additional computational burden, through
slow evolutionary or otherwise gradient-free optimization
procedures. In this work, we leverage recent advances in
machine learning for physics to take a step towards solv-
ing this problem, proposing a FSI simulation that is both
orders of magnitude faster than standard approaches and
fully differentiable, thus allowing for simple gradient-based
optimization of design and control objectives.

To address the FSI challenge, our hybrid approach uses
a differentiable numerical simulation for the deformable
solid structure and a neural network surrogate to capture
hydrodynamic effects of the fluid. To perform fast and differ-
entiable soft body simulation of a flapping 2D carangiform
swimmer, we leverage the finite-element method (FEM)
combined with the novel approach of Differentiable Projec-
tive Dynamics (DiffPD) (Du et al., 2021b). For the fluid
simulation, we train a physics-constrained neural network
for hydrodynamics as proposed by Wandel et al. (2021a),
which approximates fluidic flow on a discretized marker
and cell (MAC) grid (Harlow & Welch, 1965). Their ap-
proach requires no training data but is instead trained using
a physics-constrained loss based on the Navier-Stokes dif-
ferential equation.
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Figure 1. The forward swimming of a carangiform soft body fish immersed in fluid is simulated using our hybrid technique featuring
FEM solid simulation and neural network based hydrodynamics. The figures illustrate at three separate time steps (t = 73, 162, 275) both
the fish and the full fluid pressure field. The red arrows at the interface from fluid to solid indicate the forces applied from the fluid to the
fish. The forces are calculated with the immersed boundary method.

1.1. Our Contribution

Our contributions are the following:

• We introduce a differentiable layer linking the solid
and the fluid simulations, achieving FSI coupling while
maintaining low computational cost and full automatic
differentiability. This approach involves the specifica-
tion of the fluid boundary condition as a soft mask with
techniques from differentiable rendering (Liu et al.,
2019), and the computation of fluid-to-solid surface
forces using a variation of the Immersed Boundary
Method (IBM) (Peskin, 2002) with Gaussian distance.

• We demonstrate on a 2D carangiform swimmer that our
hybrid approach leads to realistic swimming behavior
with forward propulsion, while requiring considerably
less computational resources than existing FSI simula-
tions (Figure 1).

• We leverage the differentiability of the simulation to
directly optimize the frequency parameter of a swim-
ming controller with first order gradient optimization
to achieve higher forward swimming speeds.

• We compare our hybrid simulation with the traditional
COMSOL solver for FSI, demonstrating a monotonic
relationship between the distance travelled by the fish
with the same controller on either simulation.

2. Related Work
2.1. Soft Robotics and Aquatic Locomotion

To date there exist several examples of successful applica-
tions of soft robots in aquatic environments. Bio-inspired
artificial fish robots (Katzschmann et al., 2016; Lin et al.,
2021) mimicking biological fish have been deployed for
a range of practical tasks, from exploration of underwater
environments and observation of aquatic life (Katzschmann

et al., 2018; Li et al., 2021) to protection of marine habitats
against invasive species (Polverino et al., 2022).

Interest in the topic of aquatic locomotion has not been lim-
ited to robotics: the problem of learning swimming controls
in simulation has received considerable attention from a
reinforcement learning perspective (Gazzola et al., 2016;
Colabrese et al., 2017; Verma et al., 2018), albeit relying
on simple swimmer models that avoid the issues presented
by soft bodies and FSI. For this reason, translating learnt
controllers from these simulated works back to real-world
robotics platforms (sim2real) remains an open challenge.
Other works on aquatic locomotion simulation (Liu et al.,
2015) do not involve learning controls altogether, but are
limited to investigations into properties of biological swim-
mers through simulation.

2.2. Neural Networks for Hydrodynamics

Seminal work on Physics-Informed Neural Networks
(PINNs) (Raissi et al., 2019) laid the foundations for the
application of machine learning models as surrogate dif-
ferential equations solvers. PINN training leverages the
autodifferentiation properties of neural networks to learn
the dynamics of differential equation systems without the
need for costly training data, but using differential equation
residuals directly as the model’s loss function.

A trove of subsequent works build on top of the PINN
approach, refining the technique specifically for hydrody-
namics problems (Mao et al., 2020; Raissi et al., 2020; Sun
et al., 2020). Wandel et al. (2021a) propose a neural net-
work model for hydrodynamics based on a discretized MAC
grid and trained with a Navier-Stokes residual loss. While
technically not following the original PINN specification, as
the derivative terms in the Navier-Stokes loss are computed
with finite differences on the grid as opposed to using au-
todifferentiation of the model inputs, their model allows for
dynamic interactive specification of boundary conditions.
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For this reason, we adopt their model as a core component
of our hybrid simulator. Further work from the same au-
thors generalizes the technique to 3D simulations (Wandel
et al., 2021b) and to higher turbulence fluids (Wandel et al.,
2021c).

2.3. Differentiable Soft-Body Simulation

Differentiable soft-body simulation extends standard soft-
body simulators to compute gradients for a soft body’s
shape, control, or state parameters. Such gradients have
been proven helpful in several downstream soft robotic ap-
plications, including system identification (Hu et al., 2019),
trajectory optimization (Geilinger et al., 2020), motion con-
trol (Qiao et al., 2021), and shape optimization (Ma et al.,
2021).

Mainstream differentiable soft-body simulators fall into
two categories: physics-based and learning-based. Physics-
based differentiable soft-body simulators derive gradients
based on governing equations characterizing system dynam-
ics and require domain-specific knowledge (Hu et al., 2019;
Geilinger et al., 2020; Hu et al., 2020; Du et al., 2021b; Qiao
et al., 2021). On the other hand, learning-based approaches
aim to learn a neural network model approximating soft-
body dynamics (Li et al., 2019; Pfaff et al., 2021). Such
neural networks are naturally differentiable but, unlike their
physics-based counterparts, typically lack guarantees on
physics invariants, e.g., energy or momentum conservation.
Additionally, their generalizability to new settings largely
depends on the quality of the training data.

In this work, we use DiffPD (Du et al., 2021b), a recently
developed physics-based differentiable soft-body simulator,
to simulate our aquatic swimmers. While our algorithm
is agnostic to the choice of differentiable simulators, we
have found DiffPD beneficial because of its faster speed
compared to other physics-based differentiable soft-body
simulators and its extension to underwater robotics applica-
tions (Ma et al., 2021; Du et al., 2021a).

2.4. Fluid-Structure Interactions

Fluid-structure interaction (FSI) studies the complex behav-
ior of fluids coupled with solid objects in a multi-physics
system. FSI has been an extensively studied research topic
in mechanical engineering, computational physics, and other
related fields for many years (Dowell & Hall, 2001). Ex-
isting works on FSI typically focus on coupling fluids and
rigid or soft objects under small deformations (Mucha et al.,
2004; Zhang et al., 2007; Kalitzin & Iaccarino, 2003; Yang
& Balaras, 2006). Numerical techniques for coupling flu-
ids and nonlinear soft objects with large deformation have
also been developed in computational physics and computer
graphics (Feng et al., 2019; Brandt et al., 2019; Robinson-
Mosher et al., 2008; Lu et al., 2016; Teng et al., 2016; Fang

et al., 2020). Existing methods for FSI have been used to in-
vestigate the swimming behavior of fish (Curatolo & Teresi,
2015). These techniques provide accurate yet expensive
computational tools for applications such as underwater soft
swimmers covered in this work.

None of the FSI methods described above take into account
gradient computation. Because of the already complicated
coupling between fluids and solids, works on differentiable
FSI are unsurprisingly sparse. Existing differentiable FSI
approaches typically rely on non-physical simplifications
of fluid, solid, or coupling models, e.g., assuming simple
empirical fluid models (Ma et al., 2021; Du et al., 2021a)
or limiting interactions to be local (Li et al., 2019; Pfaff
et al., 2021). Compared with those previous works, our
work is different because we attempt to incorporate the full
physics in all possible aspects: Navier-Stokes equations for
modeling fluids, continuum mechanics for modeling soft
bodies, and immersed boundary methods (Peskin, 2002)
(IBM), a representative FSI method, for modeling solid-
fluid coupling.

3. Differentiable FSI Method

Figure 2. Overview block diagram of our hybrid simulation
method. q, q̇ are positions and velocities of finite elements; h are
actuator signals; p, vx and vy are pressure and velocity fields of
the fluid; b is the soft boundary mask; fext is the hydrodynamic
force applied by the fluid to the solid.

We hereby detail our hybrid method for fast and fully dif-
ferentiable simulation of soft body and fluid interaction.
As shown in Figure 2, our approach consists of repeated,
stacked interaction between the DiffPD solid simulator and
the Hydrodynamics Neural Network (HydroNet) surrogate
simulator. The output of the fluid simulation at time t is
used as input for the solid simulation at the same time t
through the introduction of an external fluidic force, while
the output of the solid simulation at time t is used as input
for the fluid simulation at the next time step t+ 1 through
the specification of a boundary condition. This interleaved
interaction leads to the unfolding of a differentiable compu-
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tation graph that can be backtraced by autodifferentiation
frameworks to compute gradients through the entire sim-
ulation episode and optimize objectives (Figure 8). FEM
element positions and velocities, actuations, fluid curls and
pressures, boundary conditions, external forces and Young’s
moduli are all differentiable with respect to each other. In
the following sections, we describe each component of the
system in detail.

3.1. Hydrodynamic Surrogate Simulation

Our goal for fluid simulation is that of obtaining a fast
and differentiable surrogate model of hydrodynamics, so
that swimmer designs and controls can be optimized by
differentiating directly against the simulation environment,
as opposed to doing so through evolutionary strategies or
reinforcement learning.

In particular, our surrogate simulator needs to solve the
incompressible Navier-Stokes equations describing fluidic
flow costrained by Dirichlet boundary conditions. Given
fluid density ⇢ and viscosity µ, and defining v and p to
be velocity and pressure fields over a fluid domain ⌦, the
equations consist of the following three terms:

r · v = 0 on ⌦, (1)

⇢

✓
@v

@t
+ (v ·r)v

◆
= �rp+ µr2v on ⌦, (2)

v = vd on @⌦. (3)

Equation (1) is called the divergence term, and forces incom-
pressibility of the fluid, disallowing any sources or sinks
within ⌦. Equation (2) is the main hydrodynamic term, stat-
ing that changes in fluidic particle momentum must corre-
spond to forces exerted by the pressure gradient and viscous
friction. Equation (3) is the Dirichlet boundary condition,
stating that velocities on the boundary @⌦ of the fluidic
domain must be equal to the supplied boundary velocities
vd.

The equations can be simplified for the 2D case by observ-
ing that the Helmholtz theorem allows to decompose the
velocities into a curl free part and a divergence-free part

v = rq+r⇥ a. (4)

By expressing velocities as v = r ⇥ a, with the curl a
being one-dimensional in the 2D case, we implicitly force
zero-divergence in our fluid without the need for explicitly
solving for Equation (1).

To solve the equations, we train an unsupervised neural net-
work model following the approach proposed by Wandel et
al. (2021a). The model in focus is a U-net (Ronneberger
et al., 2015) with limited convolutional channels that op-
erates on discretized fields on a marker and cell (MAC)

(Harlow & Welch, 1965) grid. The model takes as input
the curl field a, the pressure field p, the boundary mask b
identifying the domain ⌦, and the boundary velocities vd

from time step t. The model predicts as output the curl field
a and the pressure field p for the next time step t+ 1, given
a constant time step magnitude h.

The model is not trained on simulation data, but instead uses
the Navier-Stokes residuals as its loss function:

Lp =

����⇢
✓
@v

@t
+ (v ·r)v

◆
+rp� µr2v

����
2

on ⌦,

(5)

Lb = kv � vdk2 on @⌦, (6)
L = �Lp + �Lb. (7)

with parameters � and � determining how much to prioritize
the Navier-Stokes term or the boundary term.

Given this loss, the network is trained on synthetic episodes
consisting of randomly generated boundary conditions, with
the network’s curl and pressure fields output being fed back
as training data at each iteration. This way, the physics-
constrained loss is applied to increasingly realistic scenarios.

3.2. Differentiable Soft-Body Simulation

We model the soft-body dynamics by the following govern-
ing equations from continuum mechanics (Sifakis & Barbic,
2012):

⇢sq̈ = r ·P+ fext, (8)

where ⇢s stands for the soft material’s density, q = q(X, t)
tracks the position of a material point X from the material
space (undeformed shape) at time t, P represents the first
Piola-Kirchoff stress tensor, and fext captures all external
forces applied to X at time t. We refer interested readers to
Sifakis & Barbic (2012) for more background information
regarding soft-body simulation. The stress P determines
the behavior of soft material and is specified by choosing
soft material models. In this work, we use the linear co-
rotated material model as suggested by DiffPD because
of its balance between speed (Bouaziz et al., 2014) and
physical accuracy (Du et al., 2021a; Zhang et al., 2021).

Given the continuous equations above, DiffPD uses stan-
dard finite-element methods (FEM) and the implicit time-
stepping scheme to discretize the dynamic system spatially
and temporally, leading to the nonlinear system of equations
below:

qt+1 = qt + hq̇t+1, (9)

q̇t+1 = q̇t + h⇢�1
s (fext + fint(xt+1)), (10)

where q and q̇ now represent nodal positions and velocities
of finite elements at time steps specified by their subscripts.
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The notation fint denotes the elastic force induced by the
stress tensor P. Once the forward simulation process is es-
tablished, DiffPD derives its gradients using standard chain
rules and adjoint methods. Interested readers can refer to
DiffPD (Du et al., 2021b) for detailed derivations of these
equations.

3.3. Differentiable Fluid-Structure Interaction

FSI involves solving a two-way link between the DiffPD
soft structure FEM simulation and our neural network hy-
drodynamic surrogate simulation. Hydrodynamic forces
from the fluid simulation affect the soft body finite elements
as an external force fext, at the same time the soft body sim-
ulation determines the Dirichlet boundary conditions b and
vd for the hydrodynamics simulation. An additional cause
of complexity stems from the fact that these operations must
mediate between a Lagrangian and a discrete Eulerian rep-
resentation for physical quantities, with the former being
used the the solid simulation, and the latter for the fluid
simulation.

Lagrangian methods handle physics simulation by model-
ing individual particles constituting the simulated material.
DiffPD operates in a Lagrangian fashion, as the finite ele-
ments identified by q and q̇ track specific points within the
soft body and move along with the body within the domain.
Opposed to this, discrete Eulerian methods simulate PDEs
on a discretized grid such as the fixed MAC grid used by
Wandel et al. (2021a)’s hydrodynamics network. With this
representation, v and p summarise fluid properties on fixed
locations of the domain, without tracking individual fluid
particles.

The challenge in this setting is that of providing a differen-
tiable layer to compute these interaction quantities which
mediate between representations. For the solid-to-fluid inter-
action, the Lagrangian elements described by q and q̇ must
be used to compute a boundary mask b with a rasterization
operation, which is however generally non-differentiable.
Similarly, grid boundary velocities vd are generally com-
puted with a non-differentiable neighbourhood averaging
operation. For the fluid-to-solid interaction, we turn to
the fluid-to-solid stage of the Immersed Boundary Method
(IBM) (Peskin, 2002), which samples Eulerian pressure
values p on locations near the boundary in order to com-
pute Lagrangian external forces fext affecting the solid finite
elements.

Solid-to-Fluid Coupling Given the state of the DiffPD
soft body simulation from a specific time step, the finite
element positions q and velocities q̇ fully determine the
boundary condition for the subsequent hydrodynamic simu-
lation step. The positions q determine the shape and location
of the fish body, served as input to the Hydronet as a bound-

ary mask b. The velocities q̇ are instead used to compute
the boundary velocities vd as a granular cell-wise velocity
obtained by averaging the closest elements to each boundary
cell.

There is however a non trivial obstacle that renders a naive
application of the boundary mask from Wandel et al. (2021a)
non applicable to our optimization setting. By definition,
the rasterization operation computing a binary mask is non-
differentiable, thereby breaking the chain of differentiability
which we rely on for optimization.

Our solution to this issue takes from the field of differen-
tiable rendering (Liu et al., 2019), and in particular to the
techniques associated with soft rasterization. Instead of pro-
ducing a hard binary mask as a rasterization of the robot’s
finite element mesh, we use a signed distance field to pro-
duce a soft differentiable mask, with real-valued entries
bij 2 [0, 1].

Define xij 2 R2 as the spatial coordinates of the MAC grid
cell in position (i, j) and qk those of the k-th finite element.
Then each cell bij from the soft boundary mask is computed
as

bij = sigm.

0

@�ij

P
l

⇣
softmink

kxij�qkk2

⇠

⌘

l
kxij � qlk2

�

1

A

(11)
with � and ⇠ being mask softness parameters, k · k2 the
Euclidean distance and �ij = +1 if the cell location xij is
inside the fish body, while �ij = �1 if outside.

We can similarly use a differentiable surrogate to obtain
cell-wise fine-grained boundary velocities:

vdij =

 
X

l

✓
softmink

kxij � qkk2

⌧

◆

l

q̇l

!
· bij (12)

with ⌧ being a softness parameter.

Tuning the softness parameters �, ⇠ and ⌧ allows us to
tune the trade-off between boundary accuracy and smooth
gradients.

Fluid-to-solid coupling The overall purpose of our hy-
brid simulation approach is to optimize fish designs and/or
control policies with respect to a more realistic model of
hydrodynamics. Therefore, the mechanism by which the
hydrodynamics simulation affects the soft body simulation
is of utmost importance.

The way for hydrodynamic forces to affect DiffPD is
through an external force fext applied to the simulation’s
finite elements. Common drag/thrust optimizations such as
that of Chen et al. (2021) often average the force over the en-
tire solid surface. This force is shaped by two contributions,
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D�

E�

F�

Figure 3. Soft boundary masks obtained with the softness parame-
ters ⇠ = 5e-7 and a) � = 5e-9, b) � = 5e-7, c) � = 5e-5.

one due to the pressure field,

fpressure = �
Z

@⌦
p · n dl, (13)

and the other is due to the velocity field,

fviscous = �
Z

@⌦
µn⇥ a dl, a = r⇥ v, (14)

with @⌦ being the solid body boundary and n its outward
pointing normal vector. Total hydrodynamic force is ob-
tained by summing fext = fpressure + fviscous. However, for
common water-like fluids with low viscosity µ, the contribu-
tion of the viscous term fviscous can be considered negligible
and its computation can be omitted.

Given that our approach for solid simulation is based on
finite elements, with each surface element k being associ-
ated with its surface normal nk, we can compute individual
elements’ surface forces fextk. To bridge the Eulerian to
Lagrangian gap, we adopt the IBM fluid-to-solid step on
forces

fextk = �lknk

X

i,j

pij�
�
xij � qk

�
bij (15)

where � is the Dirac delta and lk = (kqk�1 � qkk+ kqk �
qk+1k)/2 is the surface length corresponding to finite ele-
ment k. With the IBM, we are able to appropriately identify
the force applied to Lagrangian element k, despite only
having access to pressures on a fixed Eulerian grid.

In practice, due to the finite discretization, it is not feasible
to adopt � directly, but a surrogate �̃(x) = �(x1)�(x2) must
be chosen such that it satisfies several properties as detailed

Figure 4. Our immersed boundary method for fluid-to-solid inter-
action. Each soft body surface element (red) is subjected to an
external force fextk in the opposite direction of its normal nk. To
compute the scalar force magnitude, nearby Eulerian cells from
the pressure field are averaged with a Gaussian function centered
around the element.

in the original IBM paper (Peskin, 2002):

�(r) is continuous for all real r, (16)
X

j<r

�(r � j) =
X

j>r

�(r � j) =
1

2
for all real r, (17)

X

j

(r � j)�(r � j) = 0 for all real r, (18)

X

j

(�(r � j))2 = C for all real r, (19)

where the constant C is independent of r. The original for-
mulation from Peskin (2002) included the additional prop-
erty of �(r) = 0 for |r| > 2, however this is not strictly
required and is only introduced for computational cost rea-
sons, which are moot if the operation is performed with
GPU parallelism.

We thus choose to use a normalized Gaussian distance for
our IBM, namely in the form

�̃(x� y) = exp

✓
�kx� yk2

2�0

◆
, (20)

with �0 being a smoothness parameter and the equation
satisfying all relevant properties.

This choice then leads to our IBM formula for calculating
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individual elements’ fextk:

fextk = �lknk

X

i,j

pij
1

Z
exp

✓
�kxij � qkk2

2�0

◆
bij ,

(21)

with Z =
P

i,j exp

⇣
�kxij�qkk2

2�0

⌘
bij being a normaliza-

tion constant.

The reason we choose a Gaussian delta function is not only
because of the increased stability due to larger function
support (as is discussed by Peskin (2002)). Using a Gaussian
as opposed to the original Dirac delta gives us the property
of differentiability of the forces with respect to the entire
pressure field. Once again, there is a trade-off between
gradient smoothness and IBM precision, as lower �0 allows
for more precise IBM interpolation, but causes the gradients
with respect to the pressure field to vanish for most locations.

The obtained fext is at the granularity of individual finite
elements. It can either be applied as a DiffPD input as-is,
allowing for precise but potentially unstable simulation of
surface interaction, or it can be used to compute the overall
thrust/drag

fext =
X

k

fextk (22)

which, divided by the total finite element number, can be
applied as an average force to all the solid finite elements,
to only model directional thrust.

3.4. Limitations

Our FSI simulator is fast and differentiable, and its hydro-
dynamics component is trainable on several different fluid
parameter settings, also supporting both still and moving
flow scenarios for swimmers (through setting of the inflow
velocity as a boundary condition). However, this does not
mean that the method is without limitations. For instance,
the method does not generalize to flow velocities well out-
side those imposed by inflow boundary conditions during
HydroNet training. The simulation can also present instabil-
ities if the forces involved are too strong or applied suddenly
between frames: for this reason we explictly set a burn-in
number Nburn-in of iterations during which surface forces
fext are linearly smoothed by a factor of t/Nburn-in.

4. Experimental Setup and Results
4.1. Soft Carangiform Swimmer

Our main experimental setting is controller optimization
for a soft body carangiform swimmer immersed in Navier-
Stokes fluid with parameters resulting in various degrees of
turbulence.

The swimmer’s profile is generated using a parametric poly-
nomial c(X) adapted from Curatolo & Teresi (2015) and
the actuation envelope is obtained with a parametric curve
adapted from Videler & Hess (1984) as shown in Figure
5. This parametric shape is discretized as a mesh, which is
used to define the finite elements for DiffPD. We set the fish
body’s Youngs’ modulus as E = 6⇥ 10

5
Pa, its Poisson

ratio as ⌫ = 0.45 and its density as ⇢s = 100 kg/m3. We
refer to Appendix B for further details.

Figure 5. Coordinate system of the fish in the material frame,
where c(X) is the parametric shape of the carangiform fish and
h(X, t) is the actuation envelope (defined in Appendix B).

4.2. HydroNet Training

We model our fluid medium as a quadrilateral 2D box of
size 0.25m⇥ 0.75m, discretized as a 100⇥ 300 MAC grid
with resolution of 2.5mm, and computed with time step
h = 0.01 s.

To immerse the solid simulation in a suitable water-like
environment at this scale, we retrain the hydrodynamics
network from Wandel et al. (2021a), performing a hyperpa-
rameter search on model hyperparameters and loss scalings
to train for density ⇢ 2 [10 kg/m3, 50 kg/m3

] and viscos-
ity µ 2 [0.125mPa · s, 1mPa · s]. The resulting hydrody-
namic networks model a variety of fluid environments, from
conditions close to laminar flow to turbulent, light-water
scenarios.

The main tuning challenge for training the network on the
desired fluid parameters is that of re-scaling the terms ap-
pearing in the losses (Equations (5) and (6)), which in Wan-
del et al. (2021a) operate on time and space resolutions of
whole seconds and metres. Given that we require a much
finer resolution, re-scaling the equation terms by a factor of
1/0.0025 = 400 allowed the training to converge.

4.3. FEM Validation with COMSOL

Our hybrid simulator has the properties of being fast and
differentiable. However, the HydroNet component of our
simulator makes it fundamentally a surrogate model with
no strict numerical guarantees. It is therefore apparent that
while using such a hybrid simulator model for design and
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control optimization will result in much faster convergence
towards a solution, it will not evaluate such solution with
respect to the underlying physical ground truth.

Figure 6. Comparison of travelled distance on the x-axis between
COMSOL Multiphysics and our HydroNet simulator.

We therefore propose to benchmark our simulator against
COMSOL Multiphysics for the forward swimming carangi-
form task, using FEM numerical simulation to model both
hydrodynamics, soft body physics, and FSI (see Appendix C
for further details). Our comparison of a surrogate model
against a slow, non-differentiable, but physically-validated
simulation is akin to performing sim2real validation (more
appropriately, sim2sim). For a further baseline, we at-
tempted a comparison with a heuristic hydrodynamic for-
mula from the work of Min et al. (2019) commonly used
in applications, however, this produced overly non-physical
results, resulting in wholly incomparable motion.

Due to inherent chaotic behavior of the hydrodynamic sys-
tem, it is impossible to perform direct step-by-step compar-
isons between simulation quantities, as any small difference
can cause explicit residuals between the simulations to di-
verge. We therefore instead compare overall fish traveled
distance between the simulations for different frequency pa-
rameter values of the controller: if the simulations maintain
monotonicity of performance as a function of the parameter,
then optimizing the parameter on the surrogate simulation
will achieve high performance on the costly, realistic sim-
ulation. This is in contrast to Min et al. (2019)’s baseline,
which results in off-scale, incomparable motion and thus
would offer no guarantees on physical optimality.

We compare our carangiform swimmer simulation against
COMSOL Multiphysics, modeling the swimmer as de-
scribed in Section 4.1 immersed in fluid with ⇢ = 50 kg/m3

and µ = 0.125mPa · s. Figure 6 illustrates the comparison
in terms of x-axis location of the swimmer’s head at the
end of an episode of 120 frames (1.2 s) for controllers with
frequency between 3 and 7Hz. As apparent, despite the pres-

Table 1. Runtime comparison between our hybrid simulator and
COMSOL Multiphysics for a 300 frame episode. Note that COM-
SOL Multiphysics does not produce gradients and a fair compari-
son is therefore only to be made between COMSOL Multiphysics’s
total runtime and our simulator’s forward pass. Also note that due
to gradient checkpointing, the backward pass for our approach is
slower than theoretically achievable.

HYBRID SIM (OURS) TIME

HYDRONET WARMUP 44 s± 0.2 s
TOTAL FORWARD PASS 3min 33 s± 16.8 s

FORWARD PASS: DIFFPD 2min 50 s± 16.5 s
FORWARD PASS: HYDRONET 43 s± 0.3 s

BACKWARD PASS 3min 57 s± 17.9 s

COMSOL MULTIPHYSICS TIME

TOTAL RUNTIME 5 h 16min 39 s

ence of a systematic mismatch of on average 6 grid-units
(equal to 6 · 2.5mm = 15mm), both simulations behave
monotonically with respect to optimality of the frequency
parameter, achieving the same maximum of travelled dis-
tance at 5Hz. In Table 1, we compare runtimes for our
simulator and COMSOL, observing a speedup in the order
of 100x.

Figure 7. History plot of the controller frequency optimization,
comparing gradient descent with the gradient-free CMA-ES
method.

4.4. Controller Frequency Optimization

To demonstrate the typical use case for our fully differ-
entiable hybrid simulator, we set up a forward swimming
task for the carangiform swimmer with the controller as de-
fined in Section 4.1, optimizing the total forward thrust
Lopt = �

P
t2[1,T ] fext(t)x for a simulation episode of

length T = 500 and time step h = 0.01 s. Moreover, we
fix the fish’s movement to be centered along the x axis, to
favor modeling of forward speed only. The objective is to
optimize the controller’s angular frequency !. We apply
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pressure thrust forces to the fish as an averaged vector fext
to limit drift and focus the optimization on swimming per-
formance. To backpropagate over the long episode within
memory limits, we resort to gradient checkpointing in be-
tween simulation steps.

The optimization experiment of the controller frequency
was done in fluid medium with ⇢ = 50 kg/m3 and µ =

0.125mPa · s. The experiment was initialized with a fre-
quency of 2Hz and used Adam optimizer. As seen in Figure
7, the optimization converged after 21 iterations to a fre-
quency of 6.3Hz. As benchmark comparison, the evolution-
ary strategy CMA-ES (Hansen, 2016), initialized with an
uninformative standard deviation of � = 1, never leaves its
initialization neighbourhood within the optimization budget,
obtaining its best value at the frequency of 2.63Hz. The
found optimum is different from that of Section 4.3 due to
our fixing of the x axis, ignoring any sideways motion.

5. Conclusion
In this work, we introduced a fast, differentiable and accu-
rate FSI simulation for immersed soft bodies. We demon-
strated the suitability of our FSI simulation for simulating
forward swimming motion of a carangiform swimmer, and
we tested its use for the optimization of the frequency of
a swimming controller. We believe our method paves the
way for more complex but fast multi-physics simulations
that couple fluid mechanics with continuum mechanics in
a unified framework. An extension of our method has the
potential to in the future enable ambitious works on phys-
ically accurate co-optimization of shape and control for
many applications including vehicle design and soft robot
optimization.
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A. Detailed Computation Graph
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Figure 8. Detailed computation graph for our simulator. Red arrows represent forward pass computation, while blue arrows represent
backward pass computation of gradients of the block’s variable with respect to forward pass quantitites.

B. Fish Parametric Actuation

Figure 9. Discretized elements and actuated elements in the top half (red), and the bottom half (light blue) for the soft fish.

As shown in Figure 9, we specify spaced elements on the fish surface to be actuated by contraction, with each actuated
element in longitudinal position X receiving an actuation signal h(X, t) at time t. The carangiform style of swimming can
be described by the following h(X, t) with a backward-traveling wave and envelope:

h(X, t) = Cv(X) sin(�X + !t)(1� e�
t
ta ), (23)

where C is a constant, v(X) is the envelope of maximum lateral displacement, � the wave number of body undulations, !
the angular frequency, c0 = !/� the wave speed, and ta is the activation time. The envelope function v(X) is given by

v(X) =
4

25L
X2 � 6

25
X +

1

10
L, (24)
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where L is the length of the fish, which for our case is L = 0.2m.

C. The COMSOL Material Model
The fish is modeled as an isotropic and linear elastic solid in COMSOL Multiphysics. The Piola-Kirchoff stress (or
engineering stress) is

Se
= 2µsE

e
+ �str(Ee

)I, (25)

where µs, �s are the Lamé moduli and Ee is the Green-Lagrange strain. We can use an additive decomposition of the strain
as

E = Ee
+Em, (26)

where Em
= Em

(X,Y, t) is a time-evolving distortion strain that models the actuation of muscles. The Green-Lagrange
strain can be written in terms of the deformation gradient as

E =
1

2
(F>F� I). (27)

The deformation gradient permits the multiplicative decomposition

F = FeFm. (28)

Note: by defining the elastic deformation as (26), the elastic deformation is

Em
=

1

2
Fm>

(Fe>Fe � I)Fm. (29)

To generate a flexural motion, we relate the distortion Em to the curvature and the lateral displacement

Em
xx(X,Y, t) = �Y

@2h(X, t)

@X2
, (30)

where Y = h(X, t), with h(X, t) being the actuation scheme described in Section 4.1, and the other components of Em are
identically zero.

D. COMSOL Comparison plots
The following plots qualitatively illustrate our comparison between our approach and the COMSOL simulation.

Figure 10. Ours: DiffPD + HydroNet swimmer simulation. Figure 11. COMSOL swimmer simulation.

Figure 12. Normalized pressure fields for a frame of the two simulations.
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Figure 13. Overlay of the normalized pressure fields of our DiffPD + HydroNet simulation and the COMSOL simulation.


