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Abstract—Black-box topology optimization (BBTO) uses evo-
lutionary algorithms and other soft computing techniques to
generate near-optimal topologies of mechanical structures. Al-
though evolutionary algorithms are widely used to compensate
the limited applicability of conventional gradient optimization
techniques, methods based on BBTO have been criticized due
to numerous drawbacks. In this paper, we discuss topology
optimization as a black-box optimization problem. We review the
main BBTO methods, discuss their challenges and present ap-
proaches to relax them. Dealing with those challenges effectively
can lead to wider applicability of topology optimization, as well
as the ability to tackle industrial, highly-constrained, nonlinear,
many-objective and multimodal problems. Consequently, future
research in this area may open the door for innovating new
applications in science and engineering that may go beyond
solving classical optimization problems of structural engineering.
Furthermore, algorithms designed for BBTO can be added to ex-
isting software toolboxes and packages of topology optimization.

I. INTRODUCTION

STRUCTURAL OPTIMIZATION can be interpreted as the
attempt to find optimal mechanical structures to support

specific load cases respecting a set of constraints. Within this
context, topology optimization aims to obtain connectivity,
shape, and location of voids inside a prescribed structural
design domain [1].

Topology is driven from the ancient Greek word τ óπoς
which means place, location, domain or space [2]. There-
fore, topology optimization can be defined as the study of
the efficient placing of holes inside the domain. Although,
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the methodology has been applied with significance in the
conceptual and early design stages of mechanical structures, it
can be extended to solve any problem regardless of the type of
structure by using Black-box topology optimization (BBTO).

In the case of solid mechanical structures, the structural
design domain is usually discretized into finite elements [3]. In
this case, the design variables represent the presence or density
of material in each finite element directly, or, in boundary
description methods, are computed from the shapes of the
structural layout. Topology optimization can be classified into
two main categories: gradient-based topology optimization
(GTO) and BBTO. GTO relies on the use of the gradient
information of the objective and constraint functions. This
leads to controversy among practitioners. On one hand, when
using gradient information, the optimization algorithm tends
to quickly (few hundreds of iterations) converge to a solution.
On the other hand, BBTO implies higher computational cost,
but is more flexible in application, as it can also be applied
to problems where gradient information not easily obtained or
not available at all.

Hence, BBTO is supposed to fill that gap in the applicability
of topology optimization by approximating solutions to the
problems that cannot be solved using conventional GTO.
However, there are challenges that limit its effectiveness and
wide use. In this paper, we discuss these challenges, presenting
techniques to relax or to avoid them. Breaking through those
challenges will allow BBTO to take advantage of recent
advances in evolutionary computation. Hence, allowing it
to extend its effectiveness to general, industrial black-box,
highly-constrained, nonlinear, multimodal and multiobjective
problems. Note that the application of GTO approaches to
black-box problems is also possible (although not advisable in
the general case) under consideration of finite differentiation
approaches. In this paper, however, we focus on BBTO in the
context of evolutionary algorithms1. Recent reviews on GTO
and multi-objective, metaheuristics-based structural optimiza-
tion can be found in [6], [1] and [7], [8] respectively.

II. OVERVIEW

In this section, we provide a brief survey on the main meth-
ods proposed in the literature, local and global optimization
algorithms, in addition to problems solved by utilizing BBTO.

1It is important to point out that approaches known under the name
(Bi-directional) Evolutionary Structural Optimization or (B)ESO [4], [5]
classify as GTO and not as evolutionary algorithms, since they use gradient
information and lack any features of selection and variation required for an
evolutionary process in the Darwinian sense.
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Hybrid algorithms that combine sensitivity information with a
black-box optimization approach are out of the scope of this
paper.

A. Design domain representation

The design domain is the design space that is predetermined
by the user to define the allowable space to be occupied by
the optimum topological structure. Initially, the domain was
being discretized into uniform spaced joints and the design
was represented by the members which connect these joints
[9], [10] as shown in Fig. 1(a). This discrete representation is
limited to truss-like or frame structures [11]. As a natural step
to relax the space limitation of the discrete representation, the
continuum domain formulation has emerged as an alternative
to overcome its limitation over the design domain [12], [13].
The traditional continuum representation is simply a binary
image formulation where the domain consists of square cells
(or hexagonal, e.g., [14]) and each cell is assigned zero (void)
or one (material) as illustrated in Fig. 1(b) and Fig. 2(a).

Fig. 1. Discrete representation (a) in comparison to continuum structural
representation (b).

Although the binary coded representation can represent
the topological details without the limitation of the discrete
representation, it is associated with two main drawbacks. First,
it results in stairs-like boundaries. Second, the number of
decision variables is the total finite elements inside the domain.
For instance, to get a fine-meshed equilateral domain of 100
elements in each direction, we would have 10,000 variables
for a 2D structure and 1,000,000 variables for a 3D structure.
These large-scale problems are computational prohibitive, and
may need millions of function evaluations, e.g. [15]; as the
total of possible solutions can be determined by the following
formula:

N !

M ! (N −M)!
(1)

where N is the total number of elements and M is the number
of elements that could be filled with material according to the
structure’s specifications, satisfying the volume constraint. To-
wards relaxation of these limitations, implicit representations
have been introduced to reduce the problem’s scale and to
allow the representation of finer topological details. The main
continuum domain representations proposed are illustrated in
Fig. 2. We will define them with detailed discussions in
Section III.

Fig. 2. Illustration of main representations proposed for the structural topol-
ogy: (a) bit array representation, (b) Voronoi representation, (c) dipole repre-
sentation, (d) pairs of curves, (e) graph representation, (f) H-representation, (g)
material-mask overlay, (h) cellular division, (i) moving morphable components
(bar representation), (k) interpolated level-set functions (topology description
function). A detailed dicussion on the different representations can be found
in Sec. III.

B. Search space exploration

Topology optimization has been intensively studied in the
literature as a continuous differentiable mathematical problem.
However, real-world applications can be complex, uncertain,
discrete, and with conflicting objectives. The fitness functions
can be of discontinuous landscapes, multimodal landscapes,
contain ruggedness or flatten space [148]. The optimization
problem can be straightforward, difficult or misleading [149].

Moreover, at the stage of product development, generating
alternative designs and exploring their objective trade-offs
are of crucial importance to reach an informative decision
[150]. There are two search spaces that can be explored: the
objective space (phenotype) and the space of the decision
variables (genotype) [89], [151]. Gradient methods proceed
with directional moves, that makes them very sensitive to the
initial solution and the nature of the fitness landscape. On the
other hand, black-box methods search the landscape without
directed moves based on the gradients. The initial solutions
and the fitness landscape impact the performance of the black-
box methods as well [148], [152]. However, that influence is
of a very little impact in comparison to the gradient methods
and can be limited by using different mechanisms [153], [154].
The following approaches have been utilized in the literature
of BBTO:
• Enhancement of the initial population [84], [25], [155],

[142], [77]
• Multi-stage and multi-population evolutionary algorithms

[67], [79]
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• Clustering at the objective space [84], [85], [23], [156]
• Sensitivity predictions and clustering in the state space

[61], [157], [62], [63]
• Fitness sharing and speciation [21], [158], [79]
• Custom phenotype genetic operators [19], [50], [159],

[32], [64], [82], [112], [27], [130]
• Generative designs [160], [161]
• Simple-to-complex evolutionary strategy [79]

C. Optimization algorithms

The selection of the optimization algorithm is crucial to
achieve satisfactory results. Many factors should be consid-
ered, e.g., the nature of the fitness landscape, the correla-
tion between the decision variables that are determined by
the design domain representation, target accuracy, and the
computational budget. A wide range of algorithms have been
proposed in the literature starting from a population-based
stochastic method e.g., [18] to a single-solution deterministic-
based method e.g., [59]. Most commonly adopted optimization
algorithms can be found in Table I.

For optimization of monolithic or multi-component struc-
tures, the structural connectivity is one of the non-linear con-
straints that should be taken into consideration [162], [81]. In
addition, a structure’s specifications and manufacturability are
constraints that should be satisfied [81], [80], [147], [8], [163],
[164], [165], [166]. Nonlinear constraints can be handled in
two ways: (1) implicitly by using repair/filtering mechanisms,
e.g., [42], [80], [81], [21], [68], [73], [46], [112], [101], [37]
or assigning a penalty function to the objective function value,
e.g., [81], [59], [79], [25], [19], and (2) coupled explicitly with

the optimization algorithm [25], [35], [95], [102], [82], [52],
[44] incorporating constraint-handling techniques, e.g., [167],
[154], [168], [169], [170], [171], [172].

D. Applications

To facilitate the application of mathematical programming
and the usage of gradient methods, efforts have been exerted
to devise differentiable objective functions for the problems
on hand. On the other hand, the gradient-free optimization
methods deal with the objective functions as black-boxes, i.e.,
the solver does not require the objective’s gradients to proceed.
Table I lists main design domain representations, optimization
algorithms and applications.

Challenges of BBTO include high dimensionality, structural
disconnectivity, coarse meshing, high computational cost, non-
smooth boundaries, poor topological attainability, checker-
board patterns, poor quality of optimized solutions, and in-
capability to reproduce the results. A BBTO method is a set
of elements and procedures, where a single element may affect
the performance of the whole method.

The design domain representation determines the number
of variables and the correlation between them. In addition,
it plays a vital role in the topological attainability and the
features that can be represented in the optimized solutions
[74], [97]. Most of these challenges are associated with the
traditional bit-array representation. Recent BBTO methods that
are based on parametric level-set methods have succeeded to
reduce the problem’s dimensionality, generate topologies with
smooth boundaries, overcoming drawbacks of checkerboard
patterns, poor quality of optimized solutions, see Fig. 3.

TABLE I
REVIEW OF MAIN REPRESENTATIONS, ALGORITHMS AND APPLICATIONS

Design domain representations Optimization algorithms Applications

• Explicit bit array representa-
tion [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25]

• Voronoi representation [26],
[27], [28], [29], [30]

• Dipole representation [26]
• H-representation [27]
• Parametric curves and graph

[31], [32], [33], [34], [35], [36]
• Map Lyndenmayer systems

[37], [38], [39], [40]
• Moving morphable compo-

nents and solid geometries
[26], [41], [42], [43], [44], [45]

• Material mask overlay [46],
[47], [48], [49], [50]

• Ground element filtering and
multi-resolution design vari-
ables [51], [52], [53], [54]

• Spectral level-set formulation
[55], [56].

• Interpolated level-sets [57],
[58], [59]

• Parameterized B-spline sur-
face [60].

• State-based representation
[61], [62], [63].

• Binary-coded genetic algorithms (GAs) [19], [20],
[64], [21], [22], [52], [65], [66], [67], [68], [69],
[70]

• Branch and cut [71]
• Real-coded GAs [72], [34], [46], [73], [74], [75],

[31], [45]
• Neuroevolution of augmenting topologies [76]
• Multi-objective evolutionary algorithms [77], [78],

[79], [80], [81], [42], [82], [23], [83], [84], [85],
[86], [87]

• Population-based incremental learning [51], [88],
[53], [52], [54]

• Evolutionary algorithms with custom operators
[64], [19], [68], [69], [89], [20]

• Differential evolution [90], [91], [92]
• Artificial immune systems [93], [94], [95], [96]
• Hill climbing [48], [50]
• Pattern search [59], [97]
• Particle swarm optimization [47], [98], [99], [100]
• Simulated annealing [101], [52], [102], [53], [51]
• Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [61], [62], [63], [44], [103], [104],
[105]

• Ant colony optimization [106], [107], [108]
• Constrained optimization by linear approxima-

tions (COBYLA) [55], [56], [109]
• Random search [56], [109]

• Structural stiffness and/or strength [75], [18], [21], [110],
[23], [67], [98], [68], [69], [111], [112]

• Vehicle crashworthiness [62], [63], [44], [113]
• Eigenfrequency [75], [114]
• Micro-mechanical resonators [66]
• Frequency selective surfaces [22], [115], [116], [117]
• Magnetics [95], [118], [96]
• Bandpass Filters [119]
• Composite structures [120], [121], [122]
• Heat transfer [102], [15], [86], [123], [124], [97]
• Fluid flow channels [125]
• Satellite systems [126]
• Multi-material and multi-component structures [127],

[128], [129], [80], [130], [81], [79], [131], [97]
• Optics and photonics [132], [133], [134], [135], [136],

[137], [104], [105], [87], [138], [139]
• Piezoelectric actuators [140]
• Compliant mechanisms [47], [141], [82], [31], [46], [49],

[127], [84], [142], [85], [143], [36]
• Biomaterials [65]
• Protein design [144], [145]
• Stereology [146]
• Resin transfer molding [147]
• Helmet facemask [83]
• PV panels [76]
• Vibration control [40]
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Fig. 3. Level-set function representation using (a) moving morphable com-
ponents and (b) Level-set function representation of interpolated fixed knots.

Furthermore, the attainability of high-resolution topologies
with complex features is demonstrated in [97]. Some examples
are given in the Appendix.

The role of the optimization algorithms comes next. The
optimization algorithm can be selected based on the design
domain formulation, the correlation between the variables, the
number of conflicting objectives, the nature of constraints and
the landscape of the problem’s objective domain. Although the
dimensionality can be significantly reduced by using effective
design representations, hundreds of variables are needed to
attain detailed and complex features [97]. Thus, development
of optimization algorithms that are capable to deal with such a
large-scale problem is crucial to advance BBTO. Advancement
in hardware acceleration, e.g., GPUs and multiprocessing, can
be utilized to reduce the computational expense, however,
efforts to increase the computational efficiency of the op-
timization algorithm is still needed to make it possible for
BBTO to be added to software toolboxes and commercial
packages of topology optimization.

The rest of the paper is organized as follows. We will
discuss different continuum formulations to represent the
design domain in Section III, whereas efficient evolutionary
algorithms that are recommended to solve the BBTO as
a large-scale problem will be reviewed in Section IV. In
Section V, we will present approaches to speed up compu-
tation using high-performance computing. In the last section,
we will discuss some of example applications on topology
optimization, discussing how such applications can benefit
from BBTO.

III. CONTINUUM DOMAIN FORMULATIONS

The general, continuum topology optimization problem can
be formulated as [6]:

min
ρ

F (u(ρ), ρ)

s.t. : G0(ρ) =

∫
Ω

ρ(x)dV − V0 ≤ 0

Gl(u(ρ), ρ) ≤ 0, l = 1, . . . , L

ρ(x) = 0 or 1, ∀x ∈ Ω

(2)

where the density variable ρ describes the material distribution
depending on location x in the design domain Ω and can
take the value 1 for material and 0 for voids. The objective
function F (ρ,u(ρ)) is to be minimized, where u(ρ) is the
state obtained from solving the governing equation and G0

and Gl are optimization constraints with the target volume V0.
The function F represents a fairly wide variety of objective
functions especially it is not limited to aggregations over
the structure which is often the case in classical mechanical
problems. However note that the purpose of the formulation
is to provide a basis for discussion, not to formally restrict
the material discussed in this article. Many of the presented
approaches could also serve for extended formulations (such
as formulations with more than two materials, where ρ can
take more values than two, or multi-objective problems where
F returns a vector).

Typically, two major challenges have to be faced when deal-
ing with topology optimization problems in this formulation
(or extensions). The first challenge is the variability of possible
solutions. For instance, in the discretized case the number of
possible solutions can be quantified by a high but finite number
as in (1). In general, material is freely distributed within
the design domain Ω and able to form arbitrary shapes and
connections. In fact, structural parts may be arbitrarily small,
reaching the domain of anisotropic micro-structures i.e., there
is a lack of closeness of the possible solutions [173]. In the
face of this design freedom, any suitable BBTO optimization
method needs a representation that is able to capture the
appropriate solutions for the considered problem without over-
simplifying or over-complicating it too much.

The second challenge is the computational expense for
evaluations of the objective function. One evaluation typically
requires at least one finite element analysis. Hence, in (2),
u(ρ) associates the design space with a mathematical physics
model of the addressed problem. Commonly, the correspond-
ing differential equations are solved by numerical approaches.
Depending on the application domain, often solid mechanics,
the problem is typically analyzed by a linear or non-linear
finite element analysis. For instance, the famous 88-line topol-
ogy optimization performs a linear elastic analysis to assess
the compliance and sensitivities of the structure [174]. Many
linear elastic problems of moderate mesh size can be analyzed
on contemporary workstations within a moderate time of a
few seconds up to a few minutes. Other topology optimization
problems may require responses based on nonlinear analysis,
such as compliant mechanisms [173] or crash problems [175],
Depending on the problem, also responses based on alternate
physics solvers such as heat conduction, computational fluid
dynamics or multi-physics simulations might be used (see
e.g., [1] for an overview). However, the simulation time may
increase significantly with increasing resolution of the analysis
mesh. An example is the field of crashworthiness simulations,
where a single evaluation can require hours or even days to
run on several machines of a computational cluster. Therefore,
an efficient optimization approach is of critical importance for
real applications, for which performing as many as hundreds
of evaluations might be a serious challenge for an engineer or
designer within a company.

To address the two previously indicated challenges, we
want to emphasize the importance of the parameterization
of the problem in this section. While plenty of optimization
algorithms are available in the literature to be used as black-
box optimizers (see Section IV), at least as important as
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the optimization scheme, is the meaning of the optimization
variables with respect to the actual design. The right choice
of parameterization will adjust the variability suitably and will
limit the number of variables so that an efficient BBTO is
possible.

Many efficient and successful optimization algorithms are
originally inspired by the field of evolutionary computation.
The biological inspiration is based on the concepts of “geno-
type” and “phenotype”. The phenotype of a solution is exposed
to the actual evaluation and hence the selection operator. The
genotype is the underlying vector of optimization variables
that are “seen” by the optimization process and modified
by its variational operators. Eiben and Smith define a rep-
resentation as a “mapping from the phenotypes onto a set of
genotypes”[176].

Common representations are binary encodings used in ge-
netic algorithms [177]; for instance, when a continuous num-
ber is represented as a binary number. A more natural encoding
is that of a binary encoding for decision problems such as
the Travelling Salesperson Problem. Other natural encodings
are real-valued design variables in evolution strategies [178],
[179]; which is particularly useful for engineering optimization
problems.

In the context of problem (2), formally, we can describe the
representation, or encoding, R as:

R : ρ(x)→ θ ∀ ρ(x) ∈ PR (3)

where θ ∈ RM is the vector of design variables and PR is
the set of represented phenotypes. Importantly, the number M
of design variables is the dimensionality of the search space
spanned by the representation.

Explicit knowledge of the encoding is not necessary. Practi-
cally, it is only necessary to implement the inverse operation,
i.e., decoding D:

D : θ → ρ(x) (4)

Then, a black-box optimizer can be applied to address the
optimization problem (2) in the chosen representation resulting
in the new formulation:

min
θ

FD(u(θ),θ)

s.t. : G0(θ) = V (θ)− V0 ≤ 0

Gl(u(θ),θ) ≤ 0, l = 1, . . . , L

θlo ≤ θ ≤ θup

(5)

where θlo and θup are vectors of lower and upper bounds on
the variables, V (θ) is the volume covered by material, and the
FD indicates that the function contains the wrapping to (2).

As expressed in (3) only a subset of the possible phenotypes
may be represented. Therefore, a representation needs to
include close-to optimum phenotypes for the given problem.
This implies that choosing the representation requires some
previous knowledge of favorable solutions. The representation
strongly influences the fitness landscape of the problem: the
choice can introduce or avoid discontinuities or smoothness
and it is possible to support or restrain the capabilities of
the optimizer, which may heavily affect the progress of the
optimization. Representations themselves can be complex,

for instance, by involving developmental steps with a small
number of parameters that encode more versatile phenotypic
variation (see for instance [180]). Hence, depending on the
representation, the optimizer has to deal with different search
spaces. A well-chosen representation facilitates beneficial
changes obtained from the search operators. This is related to
the topic of evolvability in the field of evolutionary computa-
tion, which captures the ability of a representation to efficiently
improve solutions [181], [182], [183].

Based on this argumentation, we conclude that the rep-
resentation is an essential part of the topology optimization
problem and that the representation has a decisive effect on
the realizability of a black-box optimization. In the following
subsections, we describe known representations from the liter-
ature with assets and limitations based on three definitions of
representations [184]: grid, geometric and indirect represen-
tations. Fig. 4 shows an overview of these three fundamental
categories.

In this overview, as in the majority of the related literature,
we focus on distributions of a single material type and voids
according to (2) but extensions for several materials are
imaginable by additional variables for most of the presented
approaches. Similarly, most approaches only consider two-
dimensional formulations but seem to be extensible to three-
dimensional problems.

A. Grid Representation

We classify a representation as a “Grid Representation”
if the genotype encodes properties of fixed locations in a
grid that discretizes the design space [184], [63]. The grid
representations include the bit-array representation which is
illustrated in Fig. 2 (a). The material distribution ρ(x) is
discretized in a vector of design variables ρ with elements
ρi, i = 1 . . . N . According to our proposed notation, a
majority of publications are described by θi = ρi, with
M = N . Since binary representations are discussed briefly
already in Sec. II-A, and quite critically in literature [185],
we continue the discussion with less known geometric and
indirect representations.

B. Geometric Representation

We classify a representation as “Geometric Representation”
if the genotype encodes properties of a set of fixed or movable
shape primitives that define the geometry of the structure
within the design domain [184], [63]. These primitives, or
components, can be fixed or moved around freely in the
design domain, or restricted by enforcing some connectivity,
for instance by relating them as nodes and edges of a graph.
The number of primitives can be defined by the user or can
be adaptive.

Each primitive k is defined by a number of parameters
θ(k) such as coordinates, radius, length or shape parameters
defining a geometric domain φk(θ(k)). In the most simple
cases, the area or volume defined by the domain is filled with
a default material or describes a void, but of course, further
parameters may determine the material properties. Assuming
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[1, 0, 0, 1, ...]

Grid Geometric

[positions, thickness,
shape, ...]

[growth,
environment, ...]

IndirectRepresentation:

Phenotype
Examples

Optimum
Phenotype

Phenotype
space

Genotype space:

Design
domain

Fig. 4. Three types of representations for topology optimization with evolutionary computation [184]. For increased generality, we consider a non-discretized
design domain here.

each primitive simply defines a geometric space filled with a
default material, this can be expressed by

ρ(x) =

{
1 x ∈ φk
0 x ∈ Ω \ φk

(6)

Note, however, there are approaches, for which this relation
might be inversely defined or depend on an optimization
variable for the material type. In the considered case (6),
however, the complete space occupied by material is given
by

Φ(θ) =

K⋃
j=1

φk(θ(k)) (7)

In the following, we briefly review the existing formulations.
1) Voronoi and H-representation: One of the first ap-

proaches developed as an alternative to the grid representation
is the Voronoi cell parameterization proposed by Schoenauer
[27], [186], [187], [188]. The genotype encodes the coordi-
nates and the material properties of a number of Voronoi cells.
Concretely, the parameters encode the Voronoi site (i.e., the
center) of the Voronoi cell and an additional binary variable
indicating material or void. In this way, the design domain
is subdivided in a number of polyhedral-shaped subdomains.
Fig. 2(b) illustrates this representation. The idea was picked
up later again in [26], [28] and in more recent work on
the design of electromechanical devices [189], [190]. Another
early geometric representation is the holes representation (or
H-representation), where the material is removed in the area
of a superposition of rectangular shape primitives. This was
investigated by Schoenauer et al. [186], [187], [188] and,
relying on their references, even as early as 1993 [191], [192].
The primitives are defined by four real numbers, coordinates of
the center and length in both dimensions. A similar approach
has been explored by Saxena et al. with the material mask
overlay strategy [73], [47], in which the shape primitives are

circular masks, defined by coordinates, radius and a binary
variable for material. In more recent publications, this variable
is defaulted to the removal of material [49], [193], [194], [195],
effectively resulting in a method closely resembling the holes
representation with circles instead of rectangles. The circular
material mask method is shown in Fig. 2(g).

2) Level Set Method: Geometric representations define the
boundary between material and void implicitly by the super-
position of the shape primitives. If this boundary is defined
mathematically by a superposition of basis functions, we enter
the domain of level set methods for topology optimization.
Level set methods define the boundary between material and
void as the contour of a level set function. Often level set
functions are composed of a large number of basis functions in
order to also represent fine shape variations and are therefore
typically optimized with gradient-based methods [196], [197],
[198]. The basis functions, e.g. radial basis functions, can
be considered as shape primitives, or a complete level set
function as a parameterized shape. Hence, we can consider
them geometric representations as defined in this section.

Initially, the computational cost of genetic algorithms was
found to be too large when using a topology description
function [199]. However, recently, methods using explicit level
set functions appeared whose basis functions are suitable for
BBTO. For instance, a structural boundary may be represented
by a Kriging model, interpolating values of a level set function
at knot points [58], [81], [59], [79]. Another approach is the
Movable Morphable Components (MMC) framework, where
beam shaped components define the level set boundary, hence
this relates to level set methods based on geometric basis
functions [200], [201], [202], [203]. The MMC approach lead
to an evolutionary level set method applied to crashworthi-
ness topology optimization [41], [103], [43], [44], [113]. Yet
another representation with more design freedom is based on
closed B-splines (CBS) [204] instead of predefined beams.
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3) Graph Representation: For some of the mentioned ge-
ometric approaches, the shape primitives move around freely
in the design domain by means of varying their coordinates.
However, for many problems, a concept of connectivity be-
tween the components can be useful. For instance, a geometric
representation can be augmented by a graph that defines
connections so that the genotype encodes locations of the
nodes and properties of edges such as form or thickness. Edges
may represent beams or spline curves, which are connected in
the nodes.

A representation based on Bézier Curves was proposed by
Tai and Chee [31], [205]. They connect loads and supports
by Bézier curves and the end and control points form the
genotype. The structure is obtained by assigning material to
all elements passed by the curve, where surrounding elements
are added based on a thickness property of the curve. In later
publications, the variables are explicitly encoded in a graph
and optimized with graph specific crossovers [33], [34], [206],
[207]. The graph representation with Bézier curves is shown
in Fig. 5.

Although the authors of the mentioned papers focused on
a graph representation using Bézier curves, they performed
similar investigations also for beams instead of splines [208].
Sauter et al. proposed a similar representation using complex-
shaped beams connected by a graph [209], [210]. Their
approach considers straight, variable-thickness, and curved
variable-thickness beams with specialized operators such as
splitting and merging of beams. Another, hybrid approach,
combining a grid and a geometric representation is proposed
by Balamurugan et al. [68], which uses a bit array optimization
that yields a skeleton starting point for a graph optimization,
where the nodes are rectangles of material connected by
edges defined by the skeleton. In [84], [143], the structure
is defined by piecewise linear segments with different length
and orientations. Recently, a constructive solid geometry is
proposed by Ahmed et al. [211], [212], [42], [45]. In their
work, nodes of the graph define start and end points of
rectangular bar primitives and are optimized. The bars i.e.
edges of the graph are obtained by Delaunay triangulation
and combined by using solid modeling operators such as
the constructive solid modeling union operator that yields
a material domain for overlapping bars. Fig. 6 shows the
principle of this approach.

C. Indirect Representation

A representation classifies as an “Indirect Representation”
if the genotype encodes variable properties of a generative
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Fig. 5. Example of a Bézier curves representation connected by a graph [33].

model, which implicitly defines material locations or a geome-
try [184], [63]. Boundaries between geometric representations
and indirect representations can be slightly blurred. For ex-
ample, the geometric primitives in the Voronoi representation
and level set methods are also implicitly defined. However,
in contrast to a descriptive model, the genotype θ of an
indirect representation encodes properties of a more abstract
process to obtain the material distribution in the structure.
These parameters are, for instance, parameters of rules or a
development process, possibly inspired by onto- or morpho-
genesis in nature. Usually, the mapping D(θ) → ρ(x) can
be very non-linear, possibly requiring a complex, dynamic
simulation of a development process. Indirect representations
known in the literature are presented in this section.

1) Lindenmayer system: Hornby used a generative Linden-
mayer system (L-system) representation to evolve a family
of three-dimensional table-like structures [213], [214], [215].
The L-system is a grammatical rewriting system, modeling the
cellular division process of organisms, e.g., branched topology
in plants. Although Hornby’s work does not explicitly address
a topology optimization task and no finite element analysis
for evaluating the performance is used, the task of finding a
table-like structure resembles a topology optimization in the
sense that the distribution of material in a voxel-based design
domain is optimized. Explicitly, a more recent approach uses
the L-system as an indirect representation for topology opti-
mization [216], [37]. The L-system model features successive
cell division processes. The parameters that are encoded in
the genotype are an axiom, production rules and additional
physical and geometrical properties such as the thickness of
edges. An illustration of the topology growing process is
shown in Fig. 7. The topology is obtained by performing
the development, starting from the axiom and successive
application of the rules that lead to splits of design domain
regions, where each split introduces a new edge. Besides
minimum compliance, this representation has been applied to
the optimization of wing designs [217], [218].

2) Gene-regulatory Network: Another biologically-inspired
indirect representation was proposed by Steiner et al. [219],
[220], [221], [222]. The representation encodes a gene-

Fig. 6. Example of the solid geometry modeling representation [212].

Fig. 7. The starting point and the first three developmental steps of the cellular
division process of the L-system representation [37].
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regulatory network that determines the behavior of a cellular
growth process, where cells grow inside a design domain.
The genotype is composed of parameters that form regulatory
and structural units. The state of the cell and its environment
influence the regulatory unit that can trigger the activation of
the structural units. In the basic variant, the model includes
the physical interaction of cells, cellular division, and cell
specialization into material and void cells [220].

An enhanced model [221] includes a chemical Gauss-
shaped gradient that is used for chemotaxis, i.e. an additional
force that is acting on the cells and can also be read by the
regulatory units for gene activation. The gradient is pre-defined
and does not change during the developmental process and can
be considered as a means of providing global directional and
location information. Additionally, forces on cell adherence
and repellence are introduced. Fig. 8 shows an example of the
growing process into a topology.

3) State-based Representation: Another method for an
indirect representation of the structure is to represent the
design space based on the structural state [62], [63]. Every
evaluation using a finite element analysis not only yields the
objective function value but also detailed state information
on, for instance, nodal displacements, stresses and energies
that are locally related to every element. Based on this
state information, groups of similar elements are obtained
by clustering in the space of selected local state features.
For a small number of element clusters, a low dimensional
representation is obtained, where elements are close in feature
space, but not necessarily close, or even connected, in the
design domain. This representation is illustrated in Fig. 9. The
result of optimizing this representation is used to iteratively
change the structure so that the corresponding state will change
and the representation is adapted when necessary. Hence, the
optimization is turned into a sequence of optimizations with
a lower dimensional representation. This approach forms a
generic topology optimization approach, where a gradient-like
optimization is performed based on a model that substitutes
elements’ sensitivities based on the feature input [63]. Alter-
native approaches to train the model are by finite differences
[157] or by training of a neural network model [61], [223].

4) Compositional Pattern Producing Network: An abstrac-
tion model of a development process is proposed in the form
of Compositional Pattern Producing Networks (CPPN) [224].

Fig. 8. A cellular growth model based on motile polarized cells and
voxelization [221]. The cells iteratively move, divide and specialize into a
structure.
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Fig. 9. State-based representation approach [62]: The structure is divided into
clusters based on the structural state information obtained from the simulation.

The CPPN avoids to explicitly model a development from a
small starting point to its final form. A CPPN model is similar
to an artificial neural network model. Applied for topology
optimization it processes coordinate information on the finite
elements in the design domain as inputs. These inputs flow
through nodes with regular mathematical activation functions.
The network output then determines the state of the material
in the considered elements. The CPPN model, i.e. neurons,
functions and their parameters are optimized with a neuro-
evolution by augmenting topologies algorithm [225]. Its usage
as representation for optimizing material in a design domain,
i.e. topology optimization, has been studied in two independent
works [226], [76]. The concept is shown in Fig. 10.

5) Variational Autoencoder: With the recent advent of
neural network models with many layers and millions of
tunable parameters, these have become state of the art for
many machine learning problems for which plenty of data is
available, for instance in the domains of object recognition,
image segmentation, and natural language processing. Based
on these deep neural networks a new type of unsupervised
dimensionality reduction method has become more popular,
so-called Autoencoders [227]. The target of the training pro-
cess is a reconstruction of the input at the output layer. The
network architecture is composed of an encoder, a latent layer
(a kind of bottleneck for the information) and a decoder.
Hence to achieve a precise reconstruction, the low-dimensional
latent layer needs to be an abstract representation that captures
most information on the content. As an extension, variational
autoencoder trains to reproduce the data by capturing the
probability distribution of the input data in the latent space.
In the context of topology optimization, this representation
has been explored by using large datasets of topology opti-
mization results to train the autoencoder for reconstruction of
optimized structures, see Fig. 11 for an illustration. Naturally,
the reconstruction quality depends on the size of the latent
representation, which can be chosen freely. Yu et al. [228] use
the obtained model to predict the optimal structures for given
boundary conditions. Guo et al. [124] use the representation to
perform optimization in latent space for a different objective
function which was used to create the training data. The
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work in the topology domain has been restricted to two-
dimensional cases but in the domain of object classification
autoencoders are already applied to voxel spaces [229], which
may provide insights on directions for future applications to
three dimensions.

x y z r th

material value

Fig. 10. Example for CPPN representation, adapted from [226]. Cartesian
and polar coordinates of the design space elements serve as input to a CPPN-
NEAT model. The nodal activation functions are optimized and include for
instance sine, Gaussian or sigmoidal functions. For each element, the output
of the network specifies the material within the corresponding element.

ρ ρθE D

Encoder Decoder
Input Reconstruction
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Fig. 11. Illustration of an autoencoder network for representation of structures
obtained from topology optimization, as used in [124], [228].

IV. EFFICIENT EVOLUTIONARY ALGORITHMS

Many types of evolutionary algorithms have been proposed
over the years with the aim of addressing challenging problems
such as the following:
Constrained optimization: Constraints are very common in
real-world applications, and a number of constraint-handling
techniques specially designed for evolutionary algorithms have
been proposed. Mezura and Coello [172] categorized the
constrained-handling approaches into feasibility rules, e.g.,
[230], stochastic ranking, e.g., [231], ε-constrained method
[232], Penalty functions, [233], [234], special operators, e.g.,
[235], multi-objective concepts, e.g., [236], and ensemble of
constraint-handling techniques, e.g., [237].
Classical topology optimization formulations as in (5), at least
have to balance the material versus a structural performance
metric, where one of them typically comes as a constraint.
Hence any algorithm applied to a topology optimization has
to be able to handle constraints. Besides volume, classical con-
straints result are geometric, e.g. resulting from manufacturing
constraints. Depending on the applied representation, struc-
tural feasibility (e.g. connectivity) can be a main constraint.
It can be handled implicitly by using repair mechanisms or
explicitly by using constraint-handling techniques [25].

Multi-objective optimization: Problems dealing with two
or more (often conflicting) objectives can be addressed by
so-called multi-objective evolutionary algorithms (MOEAs)
instead of the typical weighting schemes in GTO. Research on
MOEAs has flourished in the last 15 years giving rise to a wide
variety of approaches. Currently, the most popular MOEAs for
few objectives (two or three) are NSGA-II [238] and SMS-
EMOA [239]. For more than three objectives (the so-called
many-objective problems), there are many proposals [240],
but some frequently used MOEAs include NSGA-III [241] and
MOEA/D [242]. A few papers solved multi-objective topology
optimization problems. For instance, NSGA-II was used to
minimize volume and compliance in [42], [84], and to solve
a many-objective multi-component problem considering man-
ufacturability in [80], [81]. Besides multi-physics and multi-
discipline problems, typical structural problems involve several
load cases, which can be considered as different objectives.
Expensive objectives: In real-world problems, it is very
common to deal with expensive objective functions, whose
evaluation may take minutes, hours or even days. Such prob-
lems are normally handled using surrogate methods, e.g.,
[243]. For instance, Efficient Global Optimization (EGO)
[244] with a Kriging model is used in [125] for topology
optimization of fluid problems. Large approximation errors
may have a negative impact on search performance, leading to
false optima. However, the uncertainty of the surrogate model
can be beneficial to the evolutionary algorithm by smoothing
noisy fitness landscapes, and thus accelerating the convergence
and avoiding trapping in local optima [245], [246]. The selec-
tion of the surrogate model and the infill criterion is crucial
for the success of the surrogate-based optimization process
[247]. We refer the reader to [248], [249] for detailed dis-
cussions on opportunities for surrogate-assisted evolutionary
computation, as well as [250] for parallel-based algorithms.
Hybrid algorithms with integrated local searches and/or the
inclusion of gradient or approximate gradient information can
be an alternative for problems with computationally expensive
evaluations. Such hybrid algorithms would be worth a separate
review, however some examples of hybrid algorithms that
use both gradients and global search methods are [62], [69],
[251], [252]. A review on comparing different derivative-free
algorithms, including increasing problems sizes can be found
in [253].
Parallel implementation: The use of parallel computing is
very common nowadays due to the increasing complexity
of the problems being solved using evolutionary algorithms
[254], [255]. Cantú-Paz [256] classified parallelization ways of
genetic algorithms into global parallelization, coarse and fine
grained parallelism, i.e., distributed GAs, in addition to hybrid
parallelism. In global parallelism, there is a single population
and the function evaluations of the individuals are performed
in parallel. On the other hand, in coarse-grained parallelism,
the population is divided into subgroups in isolated sub-
populations that can be structured in different topologies of
communication channels for individuals migration. In fine-
grained parallel GAs, the population is partitioned into a big
number of demes. Insights into theory and implementation of
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parallel algorithms can be found in [255].
Niching: The use of niching [257], which allows clustering
together solutions that share some similarities is a useful tool
when dealing with highly nonlinear problems and deceptive
landscapes. Niching mechanisms are implemented in BBTO
methods and showed tangible success as in [21], [158],
[79]. From the application perspective, niching improves the
capability of population-based algorithms to find more than
just one solution. A set of conceptually different solutions to
chose from can support engineers in their creative process to
select the best structure according to additional criteria not
obvious to the optimization as are typically present in real-
world applications.

The selection of the optimization algorithm is crucial to
achieving satisfactory results. Although general algorithms
can be devised based on the design-domain formulation,
customization of these algorithms can be more effective to the
problem at hand. For instance, local search algorithms have
the advantage of fast convergence. However, they may not be
effective in solving problems with noisy multi-modal land-
scapes. On the other hand, a memetic evolutionary algorithm
with a niching mechanism can solve a wide range of problems,
but at a higher computational cost. Advantages of robustness,
global-seeking capability, and wide applicability are common
characteristics of global search algorithms.

V. SPEEDING UP COMPUTATION USING GPU AND
MULTIPROCESSING

Thanks to the advent of high-performance computing hard-
ware and software, engineers and designers can simulate me-
chanical structures and physical systems governed by sophis-
ticated mathematical models. These simulation algorithms can
be further coupled with mathematical optimization frameworks
to explore the optimized topology, geometry, and material lay-
out of physical designs. The bottleneck of this pipeline lies in
the process of evaluating the physical/mechanical performance
(e.g., structural compliance, target deformation, etc.) given a
set of system parameters, which typically requires solving a
set of partial differential equations with thousands to millions
of unknowns. This evaluation happens in every iteration of
the optimization loop. Developing new simulation techniques,
in particular, those fast and predictive approaches, play an
essential role in reducing the computational cost associated
with these optimization procedures. In this section, we will
review a few branches of techniques to boost the efficiency
of large-scale numerical simulation of complex mechanical
systems, with focuses on hardware and data structures.

A. Hardware Acceleration

The most expensive step in topology optimization is the
evaluation of the system’s objective for the current mate-
rial distribution, which usually requires solving a large-scale
sparse system. The rapid development of parallel computing
hardware, in particular, General-Purpose Graphics Processing
Unit (GPGPU), opens up new possibilities for accelerating
these solvers. A vast literature [258], [259], [260], [261],
[262] has been devoted to the development of GPU-based

algorithms to solve large-scale systems that are sparse, linear
and symmetric positive definite.

A large variety of algorithms have been developed in
the effort to extend a traditional CPU-based iterative solver,
such as a preconditioned conjugate gradient solver, to its
GPU implementation for direct efficiency gain. These iterative
solvers are particularly suited to be implemented on a modern
GPUs for parallelization. The high memory bandwidth, high
peak computational throughput, and the single instruction
multiple data (SIMD) architecture of the GPU hardware allow
the fast implementation of several critical operations in such
solver, including the matrix-free implementation of the sparse
matrix-vector multiplication [263], the red-black Gauss-Seidel
smoothing [264], and the geometric multi-level precondi-
tioning [265]. The combination of these parallelization tech-
niques in one solver enables orders of magnitude acceleration
compared to its streamlined CPU counterpart, opening up
possibilities to a broad range of new applications, such as real-
time simulation [265], evolutionary computing [266], meshfree
simulation [267], unstructured mesh simulation [268], and
super-scale topology optimization with up to a billion of
degrees of freedom [262]. In addition, regarding the physical
equations, GPU algorithms have proved the efficiency in accel-
erating a diversity of applications, such as thermal conductivity
[258], elastodynamics [269], and so on. In particular, the linear
elastic GPU solver based on finite element discretization [259]
[262] has been drawing the most attention in the topology
optimization community.

Most GPU-accelerated numerical solvers run on a sin-
gle GPU with relatively small data size–up to millions of
unknowns with double precision–to take full advantage of
GPU’s high internal memory bandwidth and peak computation
throughput. The communication between CPU and GPU is
minimized, in order to maximize the latency of the entire
system. This restriction makes scalability become one of the
primary challenges for a GPU solver. For example, for a
three-dimensional elastic FEM system, an NVidia GeForce
GPU with 6G memory can hold the hierarchy of multigrid
matrices (stored in CRS format and double precision) with
up to two million elements. In contrast, a CPU-based parallel
solver (e.g., the FEM solver in PETSc [270]) can scale the
problem up to 83 million voxels on a cluster where memory
is not the bottleneck. To reduce the memory usage on GPU,
a matrix-free representation for the sparse matrix turns out
to be efficient (e.g, see [271], [272]). Instead of explicitly
storing the sparse matrix, a matrix-free approach reads very
few parameters from memory and assembles the local matrix
block on-the-fly when a linear operator such as matrix-vector
multiplication is performed. Such technique (e.g., see [262])
enables high-resolution topology optimization results at the
level of 14 million active FEM elements on a single Nvidia
GPU with 8G memory.

For large-scale simulation problems, the development of
numerical algorithms that fit GPU clusters (multiple GPUs
connected by PCIe bus) or heterogeneous platforms (CPU
multiprocessors enhanced by multiple GPUs) have been draw-
ing attention in many areas. Some pioneering explorations in
this direction include [273] and [274]. The key philosophy to
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build these hardware architecture-aware numerical algorithms
is to keep the data on GPU for local computation for as long
as possible, in order to minimize the data transfer cost over the
PCIe bus. Different strategies have been taken on different par-
allization level. One strategy is to assign processors different
tasks for coarse-grained parallelism. For example, in [273],
multiple GPUs are assigned different computational tasks
for uncertainty propagation to achieve task-level parallelism.
Heterogeneous computing platforms have also demonstrated
their efficacy in accelerating large-scale simulations. For ex-
ample, a multigrid solver based on the Schur-Complement
scheme [274] has increased the resolution to one billion active
elements, on a heterogeneous CPU-GPU workstation, taking
advantage of both processors.

B. Adaptivity and Sparsity

Density [12], [275] and interface [196], [197] are the two
most commonly used material representations for topology
optimization. Among the various data structures that have been
developed in the literature, uniform grids play an essential
role in tracking the material evolution for their multiple
advantages in computation. These advantages include cache-
coherent memory access, regular subdivisions for paralleliza-
tion, simple data layout, and, in particular, the existence of
efficient numerical PDE solvers. A multigrid FEM solver
discretized on a uniform grid has been established as one of the
standard physical equation solvers for topology optimization
(e.g. [276]).

1) Adaptivity: The main weakness of a uniform grid lies
in its lack of adaptivity. To improve this, researchers inverted
hierarchical data structures maintaining grid cells with dif-
ferent resolutions, e.g., the octree grid [278] and the AMR
grid [279]. These data structures can adaptively refine a single
grid cell to allocate computational resources around regions of
interest. High-performance solvers [280] are combined with
an octree grid to solve large-scale problems with adaptivity.
Instead of adding new cells, researchers also deform grid cells,
e.g., by translating [281] or bending [282] grid lines, to get
finer discretizations around important regions. This strategy
preserves most of the computational advantages of a uniform
grid. Multiple overlapping grids with different resolutions
[283] have also been used to improve the adaptivity of a
uniform grid structure.

2) Sparsity: The target structures for topology optimization
usually occupy a small portion of the design space, exhibiting
sparse and adaptive features. A discretization taking advantage
of this sparse nature has the potential in boosting the efficiency
for both simulation and optimization. A wealth of sparse data
structures have been invented, e.g., OpenVDB [284] and SP-
Grid [285], to reduce the computational cost of by maintaining
active elements selectively. The essential idea is to establish
an efficient mapping from a grid cell index in the real, sparse
space to an index in the virtual, compact storage, enabling the
allocation of computational resources only to discretizations
occupied by or near the real structures. Examples of these
mappings include a standard hash table (e.g., local level set
[286]), an octree (e.g., adaptive distance field [287], OpenVDB

[284]), or via a Virtual Memory Page Table and the Translation
Lookaside Buffer (TLB) (e.g., SPGrid [285]). These data
structures enable large-scale optimization. For example, Liu et
al [277] invented a new narrowband grid structure to perform
topology optimization for super-resolution structures (1 billion
voxels) on a regular workstation, see Fig. 12.

One of main challenge remaining in the creation of ef-
ficient data structures for large-scale topology optimization
applications lies in the automated co-optimization of both the
discretization and the material. It is essential to allocate the
computational resources in an automatic way so that the local
discretizations can accommodate the modeling of smooth,
complex, and thin features emerged from the background.
The ultimate goal is to enable the interleaving evolutions of
both structure and discretization to obtain designs with better
performance.

VI. APPLICATIONS

Industrial engineering design optimization problems often
involve black-box simulations. More precisely, simulations of
structures or systems, for which the users do not have a precise
mathematical model for determining analytical sensitivities or
in general a limited expertise on the complex modeling behind
the simulation. Where in academia, most often analytically
traceable models are considered, in industrial development
processes users are often confronted with simulation models,
where only partial domain knowledge is available. These
models are treated often more like experimental set-ups and
validated by comparison to data from real-world experiments.
From an optimization perspective, these models are black
boxes for which a general optimization approach independent
of gradients is the possibly only option, as long as specialized
optimizers are not available.

Interesting domains are for instance virtual development
processes, in automotive or aerospace industries. Examples
of real-world applications are simultaneous topology, shape
and sizing optimisation, multidisciplinary optimization of air-
craft morphing wings as well as automotive components and
structures. Black-box simulation may be problems that involve
simulations which are challenging due to anisotropic materials
(e.g. handling of composites), multiphysics simulations (e.g.
thermo-mechanical or fluid-structure couplings), and simula-
tions of manufacturing processes (e.g. metal-sheet forming
or stamping processes) or optimization constraints resulting
thereof. The black-box context is especially relevant when
the simulations consider transient processes that have to be
addressed by explicit finite element solvers. For the mentioned
types of simulations, GTO methods are not always readily
available in general, even less in the industrial process, due
to the non-linearities, or complexity of the simulated experi-
ments, also with respect to boundary conditions or a multitude
of involved components that deviate from the assumptions of
simple academic white-box models.

A. Vehicle crashworthiness design

One interesting domain for topology optimization is the
industrial vehicle development that involves the optimization
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Fig. 12. The evolution of SPGrid block activation for a single iteration (left) and the bird beak structure obtained on the narrowband grid (right) [277].

of many different design stages and objectives [288], [289].
Especially crashworthiness topology optimization is a possible
application for the methods proposed in this article and is
currently a very active field of research. Crashworthiness sim-
ulations are an important step in the automotive development
process to ensure passive safety of the vehicle while reduc-
ing the number of physical prototypes for testing. Topology
optimization of these models is hindered by the significant
non-linearities and transient nature of the models, for which
the derivation of analytical sensitivity information cannot be
easily obtained. Due to the physical and numerical simulation
noise and the high computational cost of the simulation,
finite-differencing approaches are often difficult to realize
or infeasible, as well. Under some assumptions, sensitivity
information can be obtained for instance in a ground structure
approach [290], [291]. This offers a chance for future hybrid
approaches as well that may be able to deal efficiently with
complex crash mechanics such as material failure or very non-
linear objective functions such as accelerations.

Currently, specialized heuristic methods are applied to
crashworthiness topology optimization, and among them, ap-
proaches that apply evolutionary optimization. Optimization
of crashworthiness has been addressed by the state-based
representation optimized with evolution strategies [62], [63],
the evolutionary level set method [103], [44] and a Kriging-
based optimization for a domain parameterized via a thickness
clustering [292]. The challenging objective functions that are
tackled include for instance control of energy absorption,
intrusion or acceleration characteristics. Besides the variety
for crash problems, these methods could also be an alternative
to existing heuristics for objective functions found in impact
mechanics problems, which are dominated by even more
extreme dynamics and non-linearities, see for instance [293].

B. Design under manufacturing constraints

1) General-purpose manufacturing constraint: Early works
of manufacturing constraints for topology optimization were
not originated from manufacturability concerns, rather from
the numerical instability and mesh-dependency considerations.
It is well-known that topology optimization in a continuum
domain tends to generate numerous small holes, a.k.a. checker-
boards [294], [295]. For GTO, regularization schemes have

been developed. There are two main categories, filtering meth-
ods (e.g., [296], [297]) and constraint methods (e.g., [295],
[298]). Recently, the PDE-based filtering method [299], [300]
gained popularity due to its ease of implementation and com-
putational efficiency. For BBTO, early works [18], [21] with
explicit bitmap geometric representations suffered from the
same checkerboard issues. However, recent works [58], [59]
based on level-set methods have naturally eliminated checker-
board features due to their implicit geometric representations.
Topology optimization with regularization schemes not only
avoided numerical instabilities but generated results with much
simpler geometries. The reduced shape complexity usually
means better general manufacturability. In BBTO methods,
manufacturing constraints can be incorporated just as any other
constraints, and the geometric complexity can be controlled by
optimization parameters.

2) Process-specific manufacturing constraint: Manufactur-
ing constraints modeled for specific manufacturing processes
are referred to as process-specific manufacturing constraints.
Such constraints are usually imposed on part geometries and
are more detailed than the general-purpose manufacturing
constraints. There are three major advantages for BBTO to
incorporate process-specific manufacturing constraints.

First, for the BBTO, intermediate topologies often have
clear part boundaries. Instead, for density-based GTO, inter-
mediate topologies are “blurry”. Since it is straightforward to
evaluate the manufacturability of topologies with clear part
boundaries, process-specific manufacturing constraints can be
seamlessly integrated into BBTO. For GTO, however, in order
to evaluate manufacturability of “blurry” intermediate topolo-
gies, modeling simplification and numerical approximation are
often required, which still remains a challenging task. For
example, in order to generate simply-connected topologies for
additive manufacturing, the virtual temperature method [301]
has been developed to avoid the formation of enclosed cavities
by constraining the maximum temperature of an additional
thermal conductivity analysis. This can intuitively be achieved,
in a BBTO framework, by adding a penalty term to the
objective function if the intermediate topology is checked as
multiply-connected.

Second, since sensitivity information is required for GTO,
only differentiable constraints can be incorporated. It is true
that many non-differentiable constraints can be modified and
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approximated as differentiable. However, such numerical treat-
ments usually lead to less accurate modeling and convergence
issues. In contrast, both differentiable and non-differentiable
manufacturing constraints can be integrated with BBTO be-
cause sensitivity analysis is not required. For example, the
resin filling time consideration for liquid composite molding
process has been incorporated into BBTO [147]. Such detailed
manufacturing constraint will be difficult to implement using
GTO due to the challenge of obtaining its analytical sensitivity.

Lastly, it is more challenging to solve GTO with multiple
manufacturing constraints. Since each manufacturing con-
straint model comes with approximation and simplification,
the accumulation effect of multiple constraints will make the
problem even more difficult to converge, if it is possible at all.
For BBTO, it is relatively straightforward to formulate such
problems as multi-objective and generate Pareto frontiers to
present the optimized results. Most existing manufacturability-
driven GTO had only one manufacturing constraint, e.g. cast-
ing [302], additive manufacturing [303]. Multiple manufactur-
ing constraints have been successfully applied to BBTO [80],
[81].

Continuous relaxation of BBTO problems has become an
interesting research trend. For example, the multi-component
topology optimization considering manufacturing and assem-
bly cost constraints have previously been modeled as black-
box problems and solved by genetic algorithms [80], [81].
A continuously relaxed gradient-based formulation for the
multi-component topology optimization has recently been
proposed [304], [305], [306], which enabled efficient GTO
and showed promising computational efficiency improvement.
However, problems with many nonlinear constraints such
as maximum stress constraints, and process-specific man-
ufacturing constraints are challenging for GTO where the
resultant multimodal landscapes are required to explore for
comprehensive studies. These multiple local optima cannot
be easily explored by GTO methods even with a multi-start
strategy as the number of possible starting point can be
exponentially large (same argument as BBTO regarding the
number of decision variables). On the other hand, a GA with
a niching method can explore their landscapes quite easily and
efficiently.

C. Multiphysics applications

Exploring the trade-offs between physical properties is
essential for multiphysics topology optimization problems. In
particular, it is crucial to design algorithms that are capable of
exploring the trade-offs of the various possible combinations
of properties, such as to find metamaterials with both optimal
mechanical and acoustic properties and to design soft materials
with specified electromagnetic bandwidths for soft antenna de-
signs. The numerical measurements of these different physical
properties are computationally expensive, particularly when
multiple PDE systems need to be solved given one specific
design. These computational costs make it challenging to
incorporate the simulation models into the standard gradient-
based optimizers. For multi-physics optimization where each
physics is evaluated by a closed computer-aided engineering

package that can only be evaluated in sequence, BBTO has less
difficulty in integration and coordination, although combined
solver packages could solve some of these issues with GTO
methods.

Gradient-free approaches, in particular, the algorithms re-
lying on large-scale data generation and data mining, and in-
volving human intelligence in the design loop, will potentially
play a central role in designing the next-generation topology
optimization algorithms for multiphysics applications. Instead
of working on the optimization of materials or structures
directly to achieve multiple physical performances, these al-
gorithms rely on generating samples in a performance space
spanned by the different physical properties. It requires run-
ning large-scale simulations on parallel computing platforms
to obtain these physical properties in the precomputation stage.
These features can be correlated, e.g., Young’s modulus and
Poisson’s ratio, or independent, e.g., material stiffness and
electrical conductivity. The trade-offs between these properties
can be explored straightforwardly on the boundary of the low-
dimensional manifold in the performance space. A typical
example of this type of computational pipeline can be seen
in [307], where multiple physical properties are explored as
independent axes of the space in the data generation phase
and combined to explore the trade-offs in the optimization
stage. Another direction to explore these multiphysics trade-
offs is to develop interactive visualization tools [308] for large-
scale precomputed data. These tools provide an efficient way
to incorporate human designers into the optimization loop for
making decisions between multiple design objectives.

D. Design-dependent physics

Within the multiphysics applications framework, a note-
worthy group of problems can be denominated as design-
dependent. In such problems, the structure is interacting with
one or more distinct physical fields through a well-defined
interface, when in the presence of acoustic waves, fluid flow,
etc., or a volume, when associated with electromagnetics,
temperature variation, etc. The problem is said to be design-
dependent only when the loads on the structure can change
their location, direction, and magnitude during optimization
due to modifications in the multiphysics interfaces or volumes.

Design-dependent problems represent a challenge for topol-
ogy optimization. For example, in thermoelastic design, ther-
mal stresses are dependent on the structural design. The
current methods lead to ill-behaved optimization problems and
might produce solutions that are opposed to design practices
related to thermal stresses [1], [309]. Thermoelastic problems,
although design-dependent, can be treated as a single physics
problem when the temperature field or variation is known.
Other design-dependent problems present inherent interaction
between two or more physics, e.g., fluid-structure interaction
(FSI). In these problems, fluid pressure and/or viscous loads
are dependent on the structural boundary location and the
optimization method must explicitly track the fluid-structure
interfaces in order to account for accurate equilibrium. Al-
though optimization algorithms with discrete design variables
and explicitly defined boundaries, e.g., in hydrostatic loaded
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structures [310], acoustic-structure interaction [311], [312] and
FSI with viscous fluid flow [313], [314] have used to design
such systems, the potential of BBTO is yet to be explored.

VII. CONCLUSION

In this paper, we presented topology optimization as a black-
box optimization problem. The problem is mostly studied in
the literature based on the traditional binary-coded formulation
for minimum compliance. However, the subject of problem
formulation is rich in innovation and different formulations
have been proposed to diminish the design space for more ef-
ficient and effective optimization. Having said that, the design
representation should be formulated considering topological
attainability and how the topological details affect optimality
of the achievable solutions.

The BBTO can be considered as an application of large-
scale global optimization. However, the problem is mostly
studied using standard evolutionary algorithms that may not
perform efficiently with high dimensionality. To advance this
topic of research, it is crucial to develop global search
algorithms that are capable to deal efficiently with high-
dimensional complex problems. We provided some examples
of algorithms and techniques that can be utilized in BBTO
methods.

Furthermore, we presented various techniques to speed up
computation at software and hardware levels. The increasing
trend in using multi-core processors, in personal and portable
computers, makes the issue of computational cost less signif-
icant than before. BBTO can be considered as a complement
to topology optimization, filling the gap in the applicability
of GTO for new or non-conventional problems. Thus, we re-
viewed some example applications including crashworthiness
design, design for manufacturability, multiphysics, and design
dependent physics. Finally, we can conclude that although
recent advancements succeeded to overcome major challenges
of BBTO, the existing literature is still long far from fully
utilizing all advances in evolutionary computation and high-
performance computing. More empirical studies using the
presented methods are needed to increase the community’s
knowledge on their best usage.
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tion, École normale supérieure de Cachan-ENS Cachan, 2013.
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