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Fig. 1. We generate stress-aligned 3D trusses which are structurally-sound and lightweight. The structures produced by our method consist of families of
smooth, continuous curves tracing stress lines. Representative examples demonstrating the versatility of our approach (from le� to right): the Stanford bunny,
the rear pylon of a single engine helicopter, a bridge made of wooden beams and a simulation showing that a miniature (20cm wide) plastic bridge could
support a 93 kg (205 lbs) person.

We present the �rst algorithm for designing volumetric Michell Trusses.
Our method uses a parametrization approach to generate trusses made of
structural elements aligned with the primary direction of an object’s stress
�eld. Such trusses exhibit high strength-to-weight ratios. We demonstrate
the structural robustness of our designs via a posteriori physical simulation.
We believe our algorithm serves as an important complement to existing
structural optimization tools and as a novel standalone design tool itself.

CCS Concepts: •General and reference→Design; •Computingmethod-
ologies→ Physical simulation; Mesh models;

Additional Key Words and Phrases: curve networks, design, simulation,
topology optimization

1 INTRODUCTION
It is sometimes said that the primary objective of engineering is
to develop the sti�est possible structure by using the least amount
of material [Doubrovski et al. 2011]. �is guiding principle can be
seen in many everyday structures such as bridges and stadiums.
Strength-to-weight trade-o� is naturally expressed as an optimiza-
tion problem and its solution has become a foundational challenge
in mathematics, computer science and engineering.

Almost all structural optimization algorithms discretize the mate-
rial distribution within the structure and then a�empt to sparsify
this distribution (see Figure 3). �e nature of this discretization, be it
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voxels, level-sets or trusses, gives birth to the speci�c optimization
and algorithm applied.

Unfortunately, all of these methods have inherent limitations,
rooted in the requirement of an overprescribed set of design vari-
ables (either voxels or bars) as initialization. �e voxel grids of
traditional Topology Optimization o�en require the use of addi-
tional regularization terms in the optimization objective in order
to avoid “checker-boarding” artifacts, level-sets can require addi-
tional foliation terms to generate topology change and truss-based
methods require an appropriate set of input trusses be speci�ed.

Even when such di�culties can be overcome, these methods (by
construction) lack any global notion of object topology or geometry.
�is can have implications down stream during the design process
wherein an architect or engineer may wish to make small changes
to the design, such as constraining certain points, deleting struc-
tural members or consistently resizing elements. �e importance
of these operations, coupled with the di�culty in performing them
on standard topology optimized output, has led practitioners to em-
ploy frustratingly manual solutions such as tracing over optimized
results to produce a �nal fabricable object (Figure 2).

In this paper, we take a di�erent approach to the generation of
light, and strong structures. Instead of starting with an overpre-
scribed solution and sparsifying it, we use one-dimensional cylindri-
cal structural elements to de�ne a truss, and formulate its design as
a ��ing problem for these elements. Michell [Michell 1904] laid the
foundations for creating such trusses by proving that for a given ma-
terial budget, all elements of the optimal (sti�est) truss must follow
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Fig. 2. Topology optimization results can be challenging to fabricate us-
ing non-additive manufacturing techniques. Even when using state of the
art commercial tools for topology optimization such as Fusion 360 [Au-
todesk 2018] (a), users have to manually trace over the results (b) to
produce a fabricable geometry. © Autodesk Sustainability Workshop
h�ps://youtu.be/lyTULzvHhXw.

paths of maximum strain. Structures which ful�ll this property are
called Michell Trusses. Hence, by aligning the individual elements
with the principal stress directions of an object’s stress tensor �eld,
a structurally sound design can be created without needing to �ll
the entire shape volume with material (and later sparsifying it).

Michell Trusses can be di�cult to design for all but the simplest
geometries and loading conditions. While a number of recent works
have shown how to computationally design Michell Trusses for 2D
domains or on height-�elds, an algorithm for generating Michell
Trusses for arbitrary loads acting on three dimensional shapes has
remained elusive until now.

We present the �rst algorithm to design truss structures following
Michell Truss principles inside arbitrary 3D domains. Rather than
optimizing an initial guess, we treat truss optimization as a ��ing
problem. Our method requires only a single solve of the static
equilibrium equations to compute a continuous stress �eld. We
then use a novel parametrization method to produce a graph of
a prescribed resolution where each graph edge is as aligned as
possible with the underlying stress tensor �eld. Our method avoids
many of the di�culties of previous methods, its initialization is
trivial, and we require no additional regularization terms to avoid
high-frequency artifacts in our results.

Contributions. To summarize, the main contribution of our work
is the �rst algorithm for generating 3D Michell Truss structures on
complex 3D geometry. In realization of this overarching goal, we
make the following three technical contributions:

• A method for extracting a volumetric, stress-aligned frame
�eld.

• A method for generating a volumetric texture parametriza-
tion with coordinate lines aligned with the frame �eld.

• A method for extracting the truss structure from a volumet-
ric texture.

We show results on various 2D and 3D examples and demonstrate
the high strength-to-weight ratio we achieve compared to naı̈ve
truss layouts.

2 RELATED WORK
Structural optimization is a classic problem in computational de-
sign, fabrication and digital manufacturing. Methods exist to help
designers identify the absolute weakest parts of objects [Zhou et al.
2013] or the weakest parts under real world forces [Langlois et al.

2016]. Other methods a�empt to reinforce designs to improve their
strength [Stava et al. 2012] or �nd the most stable orientation for
3D printing a design [Umetani and Schmidt 2013].

In this paper, we focus on the problem of generating structurally
sound objects via optimal material placement. Algorithms for this
task de�ne optimality using some measure of an object’s strength—
most o�en a�empting to minimize an object’s compliance under a
given load [Bendsøe and Sigmund 2009; Freund 2004] while satisfy-
ing constraints on the amount of material used.

2.1 Voxel and Level-Set Optimization
Algorithms for structural optimization can be di�erentiated based
on their chosen discretization for the material distribution. One o�-
used material discretization is a dense voxel grid (though other mesh
structures can be used [Gain et al. 2015; Ha and Cho 2008]). �is
approach has recently been used to create extremely detailed designs
such as bone-like structures [Wu et al. 2017] and even airplane
wings [Aage et al. 2017]. Variations on a theme include using image
slice stacks to generate in�ll for 3D prints [Mao et al. 2018]. While
capable of generating a wide range of stable designs, these methods
can be di�cult to control, requiring regularization to avoid non-
physical “checkerboarding” artifacts (high frequency pa�erns of
solid and empty voxels) and disconnected components (which make
the designs un-manufacturable) [Schumacher et al. 2015]. �ey also
require a choice of density cuto� which determines when a cell is
considered empty or not. Voxel-based topology optimization is also
unsuitable for many mission-critical engineering applications as it
can create internal cavities and tiny internal features making surface
inspection impossible [Todorov et al. 2014; Waller et al. 2014].

Level-sets have recently become a popular material distribution
representation, in part because they help avoid some of the artifacts
of a discrete voxel representation [Wang et al. 2003]. Level-sets
can represent smoother geometry and their use mitigates “checker-
boarding”. However, such methods must rely on foliation terms to
instigate topology change with the �nal outcome depending on the
topology of the initial solution [Allaire et al. 2004].

�ere have also been e�orts to improve the performance of these
types of high resolution material optimization methods. For in-
stance, by assuming that the outer shape is �xed, Ulu et al. [2017]
show how to leverage model reduction to speed up internal structure
optimization by reducing the number of variables.

2.2 Truss Optimization
Truss-based optimization methods [Bendsøe et al. 1994; Freund
2004] are a�ractive for their small number of design variables
(compared to voxel-based methods) and ease of manufacturing.
Michell [1904] �rst discovered that an optimal truss layout (in terms
of strength-to-weight ratio) is given when trusses are aligned with
the principal stress directions induced by loading conditions. Intu-
itively, this aligns elements with the directions of pure compression
and tension minimizing stress due to bending. In certain cases, it
is possible to solve for this optimal layout analytically [Jacot and
Mueller 2017], but no analytical solution is known for the general
case, so the ground structure method (GSM) [Dorn et al. 1964; Ze-
gard and Paulino 2015] is used. Here, an initial layout of a �nite
number of trusses is speci�ed, and the radii and connectivity of the
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Fig. 3. Optimization of a cantilever beam (a) using voxel-based continuum-method (c) and a ground structure method (e). Voxel-based continuum-methods
optimize for material placement (c) on the voxelized domain (b), while the ground structure method over samples the domain with truss members (d) and
solves for the optimum set of members (e).

trusses are optimized to minimize the total weight. �e traditional
GSM formulation su�ers from several problems: (1) an initial layout
of node positions needs to be speci�ed, which can limit the solution
space; (2) it can yield self-intersecting beams; (3) it assumes that the
cross-section of each truss member can be set independently, which
makes large-scale manufacturing challenging.

Multiple heuristic methods such as particle swarm optimiza-
tion [Li et al. 2009], ant colony optimization [Kaveh et al. 2008],
teaching-learning-based optimization [Camp and Farshchin 2014],
and genetic algorithms [Kawamura et al. 2002] have been proposed
to address the third problem by limiting the cross-sections of the
trusses to a small set. Mixed-integer programming techniques have
been used to achieve global optima for this problem [Achtziger and
Stolpe 2007; Rasmussen and Stolpe 2008; Stolpe and Svanberg 2003].
However, these methods were only demonstrated on small models.
Jiang et al. [2017] recently demonstrated much larger examples by
dividing the mixed-integer problem into three subproblems that
were solved iteratively. �is works well in practice, but does not
guarantee a globally optimal solution. �e method also optimizes
initial node positions and connectivity to avoid self-intersections,
but still requires an oversampled initial mesh, the design of which
remains challenging.

2.3 Stochastic and Spectral Approaches
Martinez et al. [2017] generate procedural anisotropic “foams” by
warping the local distance metric. �ey show that by controlling
this warping they can generate 3D printable metamaterials with
anisotropic mechanical properties, and that they can align their
metamaterials with the stress �eld resulting from a 2D topology op-
timized structure. In contrast to this approach, our method operates
on a larger, macroscopic scale, does not require an initial topology
optimization pass, and provides us with much greater control of
the resolution of the produced structure. We also show that our
method can produce fabricable output from 3D stress �elds, not
just 2D. Nguyen et al. [Nguyen et al. 2012] generate a conformal
cell structure from a prede�ned set of cells. However, the radii of
trusses can still vary uniquely, which makes manufacturing di�cult.
Wang et al. [2013] generate skin-frame structures with a solid outer
shell and strut �lled interior to reinforce objects for 3D printing.
�e method requires an initial internal sampling of nodes; struts
are �lled in with an ANN method, and an `0 sparsity optimization
is used to minimize the number of struts.

�ere have also been more user-centric algorithms proposed. For
instance Zehnder et al. [2016] propose an interactive design tool
for constructing ornamental curve networks on surfaces. �ey use

a spectral approach to determine structural stability, ensuring the
design has no low energy deformation modes.

2.4 Michell Trusses
�ough some questions have been raised regarding the optimality
of Michell Trusses [Sigmund et al. 2016], they still play an important
role in engineering design. While the methods above try to approx-
imate a truss layout via optimization, [Bendsøe et al. 1994], other
methods more directly a�empt to generate Michell layouts. Tam et
al. [Tam et al. 2015; Tam and Mueller 2017] generate principal stress
lines directly by integrating the stress �eld, and develop a novel
robotic arm printer capable of printing along these lines directly.
However, currently the method only applies to 2.5D structures (i.e.,
structures that are 3D but only need one layer of trusses, such as
shells or membranes), and cannot handle 3D volumetric cases. Li
and Chen [2010] begin with a (very simple) user provided beam
network which connects the contacts to the points of application of
external forces. �en, an iterative method subdivides this structure
and be�er approximates principal stress lines until the desired com-
pliance/strain energy is achieved. While motivational, this method
only works for 2D structures. It is also unclear if the user interaction
is amenable to more complicated shapes or contact/load con�gura-
tions. Li et al. [2017] produce rib like reinforcements aligned with
principle stress directions but again, only for 2.5D structures.

2.5 Parameterization-Based Mesh Generation
Our method replaces structural optimization with automatic mesh
generation and provides the �rst (to the authors’ knowledge) algo-
rithm for computing Michell Trusses in arbitrary 3D shaped domains
under arbitrary loading conditions.

Our method is inspired by recent developments in hex and quad
meshing for 3D geometries (for instance [Nieser et al. 2011; Panozzo
et al. 2014]). �ese algorithms use prescribed frame �elds to align
the gradients of a volumetric function such that a hex mesh can
be extracted. �e general hex meshing problem is hard and still an
active area of research. None of the currently available algorithms
satisfy the criteria necessary for solving our particular problem.

�e seminal paper, CubeCover [Nieser et al. 2011], solves a gener-
alized version of the parametrization and mesh extraction problem
we solve. However, their method must introduce discrete optimiza-
tion variables in order to compute a well aligned frame �eld. We
con�rmed via personal communication that CubeCover does not
generate approriate frame �elds and thus “it’s impossible for the so�-
ware in its current state to be used as stand-alone solution” [Nieser
2018]. Ray et al. [2016] and Solomon et al. [2017] tackle the issue of
frame �eld generation by introducing functional representations of
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frames. Ray et al. align their frame �eld with a mesh boundary and
smoothly interpolate into the object volume. Solomon et al. also
smoothly interpolate inside the object volume using a boundary el-
ement based approach. However, our problem requires the opposite
objective as we care li�le for boundary alignment and much more
for accurate alignment within the mesh volume itself. Lp -centroidal
voronoi tessellation [Lévy and Liu 2010] can generate hex-dominant
meshes that take a background anisotropy �eld into account. How-
ever, it does not follow the anisotropy as closely as our method does.
Lyon et al. [2016] present a method for mesh extraction; that is,
given a parametrization on a tetrahedral mesh, they extract out a
3D-embedded graph. However, their method requires that the input
parametrization is boundary-aligned. Again, our method requires
good alignment in the interior of the object, not the boundary, mak-
ing this method unsuitable. Many of our results such as a bridge
or beam (Figs. 15, 10) are naturally stronger when trusses are not
normal to the boundary. Unlike all of the methods above, ours is
the �rst to generate global, structurally sound parameterizations.

3 BACKGROUND AND PRELIMINARIES
We begin by introducing the technical background necessary to
understand our formulation, starting with an introduction to truss
optimization.

3.1 Truss Optimization
A truss is a structure consisting of a network of members, each
of which is under purely axial stress. Typically, the forces only
act at the joints between these members, known as the nodes of a
truss. Given a domain Ω ⊂ Rd , and boundary conditions consisting
of a set of static forces applied on the boundary and anchoring
parts of the boundary to �xed supports, truss optimization is the
problem of �nding a structurally sound truss minimizing the volume
of material utilized. In general, this involves optimizing over three
design parameters:

(1) the topology, which speci�es the connectivity of the truss
members;

(2) the geometry, specifying the positions of the nodal points;
and

(3) the size, which gives the cross-sectional area of the mem-
bers.

We use the term truss layout to refer to the choice of topology and
geometry of the truss. Mathematically, this is equivalent to a graph
embedded in Ω.

In the classical truss optimization formulation, known as the
Ground Structure method, an a priori chosen set of uniformly spaced
nodal points and members cover the problem domain Ω, forming
the so called ground structure. �e topology of the optimal truss
is generated by varying the cross-sectional areas of the members,
allowing for zero areas which e�ectively removes those members.
Since the nodal points are assumed to be �xed, the classical approach
only solves for the topology and size parameters.

3.2 Michell Truss Theory
Michell’s theorem Michell [1904] characterizes the fundamental
properties of the optimal truss structure, called the Michell truss, for

Fig. 4. Michell Truss members are aligned with the principal directions
of the underlying stress field. Here, we show the example of a cantilever.
The ellipses visualize the stress tensor, and the optimal Michell truss for
a chosen discretization is overlaid on the problem domain. Inset: Michell
truss member aligned with a stress eigenvector.

the problem de�ned above. �e theorem states that the members
of the optimal truss structure lie along the principal directions of
the virtual stress �eld. �e virtual stress �eld is de�ned as the
stress induced by the given external forces if the domain were to
be uniformly �lled with material, and principal stress directions
simply refer to the eigenvectors of the stress tensor matrix. Owing
to the continuity of the stress tensor �eld and the orthogonality of
eigenvectors of a Hermitian matrix, the principal stress directions
form a set of families of orthogonal curves called the principal stress
lines. In the continuous se�ing, an optimal Michell Truss consists
of an in�nite set of in�nitesimally small members tracing these
curves. Computationally, the optimal truss layout for the chosen
discretization consists of �nite sized members approximating the
principal stress lines (see Figure 4).

In the Ground Structure method, the approximation error is de-
termined by the density and connectivity of the initially chosen
ground structure. Unfortunately, it is di�cult to choose an appro-
priate discretization balancing accuracy and computational time for
complex domain geometries.

4 STRESS-ALIGNED TRUSS NETWORK GENERATION
We take a parametrization-based approach to generating stress
aligned trusses. Our algorithm consists of four independent phases:
(1) stress tensor �eld generation using �nite element analysis (FEA),
(2) stress-aligned frame �eld ��ing, (3) volumetric texture parametriza-
tion, and (4) structural member extraction (Figure 5). Optionally, we
can choose to sparsify a previously generated truss layout to reduce
material use.

One might ask why follow such an approach given that robust and
reliable hex meshing for arbitrary geometries is, as yet, unsolved.
Fortunately, our problem is more amenable to solution than that of
general hex meshing as we have a volumetric tensor �eld to guide us.
We also do not require hexahedral cells everywhere in our domain,
or a boundary aligned structure.

�ese considerations eliminate some of hex-meshing’s most ag-
gravating di�culties, allowing us to develop a �exible algorithm,
which, as we will demonstrate, can be applied to a wide variety of
geometries. In the remainder of this section, we will detail each step
of our truss generation method.
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Fig. 5. Overview of our method: (a) starting with a problem domain (green) with fixed points (red) and loads (orange) as boundary conditions, we first perform
FEM analysis to compute the stress field (b). A continuous and smooth frame field (c) aligned with the principal stress directions is then computed. The
components of this frame field are then used to compute a texture parametrization on the domain (d), whose isocurves (show in orange and purple) are traced
to extract a stress-aligned truss structure (e).

4.1 Finite Element Analysis
�e �rst step of our method is to generate a stress tensor �eld for
an input geometry. We use standard linear elastic [Gould and Feng
1994] �nite element analysis with tetrahedral discretization [Be-
lytschko et al. 2013; Levin et al. 2017] for this task. Both Dirichlet
and Neumann boundary conditions are manually determined based
on the expected loading conditions of the given shape. We then
compute the Cauchy stress tensor �eld (for our elements, a single
tensor per tetrahedron) for use in subsequent algorithmic stages.
We use the same discretization for all steps of the method.

In the remaining sections, we refer to the continuous input do-
main as Ω ⊂ R3 and the tetrahedral discretization of the domain as
the meshM = (V,T).

4.2 Stress Aligned Frame Field Generation
Naı̈vely, a Cauchy Stress tensor �eld σ (x) can be
interpreted as a frame �eld by representing each
tensor by its three eigenvectors. Because each σ (x)
is a Hermitian matrix, its eigenvectors are guaran-
teed to form an orthogonal basis. However, such a
frame �eld is almost certain to be non-smooth as
the direction of each eigenvector can be arbitrarily
�ipped or interchanged (see inset). Previous algo-
rithms for frame �eld generation [Nieser et al. 2011]
handle such re�ection symmetries by searching over all possible
symmetric frame con�gurations. �is is e�ective but complicates
optimization by introducing discrete variables.

Rather than using discrete variables, we are inspired by methods
which work with inherently symmetric, functional representations
of frame �elds [Ray et al. 2016; Solomon et al. 2017]. We are also
in�uenced by Levin et al. [2011] which shows that by using the
Rayleigh �otient [Horn and Johnson 1990] as an objective, one
can produce vector �elds that smoothly align with the most locally
anisotropic direction of a tensor �eld. �e key observation is that the
tensor itself is a useful, symmetry agnostic frame �eld representation
and here we leverage this notion and extend it to frame �eld ��ing.

A 3D frame can be encoded using three unit vectors. We de�ne
the notion of alignment of a single unit vector with the stress tensor
using the square root of the absolute value of the Rayleigh �otient,
and introduce the notation ‖ · ‖M , where M ∈ R3×3. Now, for unit
vectors v, ‖v‖M = (|vTMv|)1/2 is maximized when v is aligned
with the primary eigenvector of M .

Fig. 6. Our cost function has identical local minima corresponding to any
orthogonal transformation that aligns a frame with the second and third
eigenvectors of a tensor. This behavior is consistent for tensors with 3 (le�)
2 (center) and 1 (right) distinct eigenvalues.

Let the eigendecomposition of σ be given by σ = QΛQT , where
Λ is a diagonal matrix whose diagonal elements are the sorted (in
decreasing order) eigenvalues of σ . We de�ne

σ+ = QλQ
T , (1)

where the operation λ = (|Λi j |) returns a matrix with entries of Λ
replaced by their absolute values.

We are now ready to de�ne alignment of frames and stress ten-
sors. We de�ne a “good” �t between a frame and a stress tensor as
one where the �rst axis of the frame is aligned with the primary
eigenvector of the stress tensor and the other two axes are aligned
with the second and third eigenvectors (though it does not mat-
ter which aligns with which). To this end we de�ne the following
frame-tensor matching function:

Eidata (R = (r1, r2, r3)) = ‖r2‖σ i+ + ‖r3‖σ i+ , (2)

where σ i ∈ R3×3 is the stress tensor of the ith tetrahedron in our
meshM (we use the simulation discretization for the ��ing stage
of our method as well), R is our frame with rj ∈ R3 its jth direction
vector. �e positive-de�nite matrix σ i+ is de�ned according to Equa-
tion 1. �is cost function has a set of identical minima at every
frame alignment which satis�es our criteria (Figure 6). In order to
improve the numerical behavior of this energy function, we rescale
λ′ so that the eigenvalues lie in the range [1, 30] (chosen experimen-
tally). Note that this rescaling alters neither the eigenvectors, nor
the ordering or multiplicity of the eigenvalues of M , making ‖ · ‖M
a true norm.

Next we need a method for disambiguating the local minima in
Equation 2. Typically this is done combinatorially, but here we
follow the approach of Solomon et al. [2017] and instead use a
smoothness energy to produce a well-��ed, consistently aligned
frame �eld. Solomon et al. represent rotations using canonical axis
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functions and use a standard Laplacian smoothing term. While we
borrow their smoothing energy, we cannot use their frame repre-
sentation as it requires an extra, approximate projection to produce
proper, orthogonal frames. In our problem, alignment with the
data is critical, and introducing error via such a projection is not
acceptable.

Instead we represent a frame at the centroid of a tetrahedron
using rotation matrices, parameterized via the matrix exponential,
Ri = expm

(∑4
j=1

[
ω j ] ) ∈ R3×3. Here, ω j ∈ R3 are angular velocity

vectors at the vertices of each tetrahedron and the [·] operator
computes the cross product matrix from an input vector. �is allows
us to de�ne a smoothness energy in the following manner:

Esmooth (ω) =
1
2ω

T Lω +
1
2ω

Tω, (3)

where ω is the stacked vector of all per-vertex ωi ’s, and L is a block
diagonal cotangent Laplacian matrix. �e second term regularizes
ω and prevents it from taking arbitrarily large values. In practice
we found this helped with the stability of the line search of our
optimization scheme (fmincon [�e MathWorks, Inc. 2017])

Initially we a�empted to perform frame ��ing using a weighted
sum of Equation 2 and Equation 3:

Eα (ω) =
N∑
i=1

Eidata (r1 (ω) ,r2 (ω) ,r3 (ω)) + αEsmooth (ω) (4)

ω∗ = argmin
ω

Eα (ω) (5)

where N = |T | is the number of tetrahedra in M, α is a scalar
weight, and Ri = (r1,r2,r3). Minimizing this cost function, using
an L-BFGS Hessian approximation, revealed issues in choosing an
appropriate α . To alleviate this problem, we again lean on the fact
that our sole concern is minimizing the data term. �e only purpose
of the smoothness energy is to help us choose an appropriate local
minima to descend into. To this end, our �nal ��ing algorithm
(Algorithm 1) is Augmented Lagrangian-esque [Nocedal and Wright
2006] in that we repeatedly minimize Equation 5 with increasingly
smaller α until the data cost stops decreasing. In practice our ter-
mination criteria was not complex: a �xed thirty iterations a�er
each of which α was reduced to (2/3)α . �is proved to be more than
enough for all our examples and yielded excellent results. �ere is
a minor implementation detail which arises when using matrix ex-
ponentials as a parametrization of rotation matrices—their gradient
is unde�ned at ω = 0. We avoid this problem by perturbing any 0
length angular velocity vector by the square root of machine epsilon
(a standard work-around). Other terms in the gradient ensure good
numerical behavior near the singularity.

4.3 Induced Parametrization Computation
We use our smooth, data-aligned frame �eld to compute a stress-
aligned parametrization from which we will create our Michell Truss.
We de�ne Ω ⊂ R3 as the world space that our object occupies and
u ∈ R3 as a volumetric texture domain. We chose our structural
members to lie along the coordinate lines of u and seek to �nd a
parametrization u = ϕ (x) : Ω → R3 that aligns these coordinate

ALGORITHM 1: Iterative method for computing a stress-aligned frame
�eld.
ω ← 0;
α ← 10 |T |;
repeat

/* Initialize L-BFGS with previous estimate of ω to solve

(5) */

ω ← L-BFGS(Eα , ω);
α ← 2

3α ;
until convergence;
return ω ;

lines with our frame �eld. Formally we seek a ϕ (x) such that
∂ϕ

∂x
r1 =

[
1 0 0

]T
∂ϕ

∂x
r2 =

[
0 1 0

]T
∂ϕ

∂x
r3 =

[
0 0 1

]T
,

(6)

at the center of each tetrahedron in our mesh.
We can write these requirements as a linear system of equations

by constructing the discrete directional gradient operator for each
tetrahedron in our mesh:

Gi (v) =
[
vix ·Gi

x + viy ·Gi
y + viz ·Gi

z
]
, (7)

where Gx , Gy and Gz are the discrete gradient operators of our
tetrahedral mesh, v ∈ R3 is the direction in which the derivative
is to be measured (at the centroid of a tetrahedron) and i indexes
our tetrahedra. We can assemble these local directional derivative
operators into global matrices to produce the global operator G (v).

We proceed by constructing three directional derivative operators,
one for each frame director

G1 = G (r1)
G2 = G (r2)
G3 = G (r3) .

(8)

�e discrete version of Equation 6 can then be stated as the following
constrained minimization problem.

ϕ∗ = argmin
ϕ



G1 0 0
0 G2 0
0 0 G3

 ϕ −

1
1
1




2

2

, (9)

s.t.



0 G1 0
0 0 G1
G2 0 0
0 0 G2
G3 0 0
0 G3 0


ϕ =



0
0
0
0
0
0


, and


G1 0 0
0 G2 0
0 0 G3

 ϕ >

0
0
0

 . (10)

�at is, we constrain the gradients of the parametrization to follow
the frame �eld (eq. 10), while optimizing for a regular, equi-spaced,
solution (eq. 9). Unfortunately, the above formulation turns out to be
infeasible for most of our test cases. A counting argument suggests a
probable cause: our target solution has 3|V| variables, but we apply
9|T | constraints. Since, typically |T | � |V| for manifold meshes
(with low genus), the problem is likely to be overconstrained.
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�erefore, we reformulate Equations 9–10 into an unconstrained
weighted quadratic minimization.

ϕ∗ = argmin
ϕ

β



G1 0 0
0 G2 0
0 0 G3

 ϕ −

1
1
1




2

2

. . .

+





0 G1 0
0 0 G1
G2 0 0
0 0 G2
G3 0 0
0 G3 0


ϕ −



0
0
0
0
0
0





2

2

(11)

where the parameter β provides user control over the regularity of
the truss spacing. Figure 7 shows how the value of β in�uences the
solution.

Fig. 7. Varying β to control truss spacing for the bar with fixed ends prob-
lem: the problem domain and boundary conditions (a), a slice of the truss
extracted by se�ing β = 1, thus preferring regular spacing over orthogo-
nality of the parametrization (b), and the same slice with β = 0.1, which
favours parameter orthogonality (c).

4.4 Truss Layout Extraction
In the �nal step of our algorithm, the parametrization is used to
extract the truss layout as a graph embedded in Ω. In order to avoid
confusion with the vertices and edges of the input geometry, we
exclusively use the words nodes and elements to refer to the vertices
and edges of the graph extracted from the parametrization. Similar
to parametrization based approaches for hex meshing [Lyon et al.
2016; Nieser et al. 2011], our aim is to trace the integer isocurves of
the parametrization. �at is, we want the nodes N of the extracted
graph to be the points mapped to integers, i.e.,

N = {x ∈ Ω | ϕ(x) ∈ Z3}, (12)

and the elements E connect adjacent points on an integer grid, i.e.,

E = {{x, y} | x, y ∈ N , ϕ(x) − ϕ(y) ∈ {e1, e2, e3}}, (13)

where ei ’s are the standard basis vectors.
Note that only the gradient directions of our parametrization

have any physical meaning, and therefore, applying an arbitrary
translation and/or scale to the parametrization essentially keeps the
physical information intact. In order to provide user control over
the density of the extracted truss, we �rst translate and scale ϕ to
normalize it to the range [0, 1], and then scale by a user-de�ned
“resolution” parameter ρ. We refer to this translated and scaled
parametrization as ϕ̃ = (ϕ̃1, ϕ̃2, ϕ̃3).

As noted earlier, existing work on hex-meshing assumes that the
parametrization is de�ned such that for all points on the domain
boundary, at least one of the parameter values is an integer. Since
this is not true for our parametrizations, we also have to include
additional nodes on the boundary, along with elements connecting
these to each other and to the internal nodes. We defer the discussion

Both 2D and 3D
∂Ω Boundary of the input domain
∂M �e simplicial 2-complex boundingM
N Points on the integer grid de�ned by ϕ̃ (the set of nodes

of the truss layout)
E �e set of elements of the truss layout

2D
γi An integer isocurve of ϕ̃i
Γi �e set of all γi
NEi Intersection points b/w curves in Γi and all edges ofM
NE Disjoint union of NE1 and NE2
Ne Points in NE lying on a particular edge e
Nf ,γi Points on the integer grid, lying on the intersection b/w

γi and a particular face f

NF Union of Nf ,γ1 and Nf ,γ2 over all faces ofM
Ei Set of all elements tracing integer isocurves of ϕ̃i

3D
Si An integer isosurface of ϕ̃i
γi j An integer isocurve of (ϕ̃i , ϕ̃ j )
NF Points of intersections between all {γi j } and faces ofM
NE Points of intersections between all {γi j } and edges of

∂M
Table 1. Notation for the truss layout extraction procedure described in sub-
section 4.4.

of the special considerations for the boundary for now, and describe
our algorithm for tracing the internal elements �rst.

For ease of exposition, we start by describing a 2D truss layout
extraction algorithm. Recall that our stress �elds do not have singu-
larities in the interior of the domain since forces are only applied at
the boundary. �is implies that the principal stress lines must end
at the boundary, and cannot end abruptly or form closed surfaces
inside the domain. Since the previous steps of the algorithm ensure
that the isosurfaces of ϕ̃ follow the principal stress lines, we make
the assumption that they do not form internal closed loops as well.
�erefore, for tracing these isocurves, we start at their end points
on the boundary, and trace until we hit the boundary again.

We use Γi to refer to the set of end-to-end integer isocurves of
ϕ̃i , and γi to refer to an arbitrary curve from this set. Note that ϕ̃ is
a piecewise linear �eld stored at the vertices, and its value at arbi-
trary x ∈ Ω can be found using Barycentric interpolation. However,
Barycentric interpolation on a triangle is equivalent to linear inter-
polation along edges followed by interpolating across a line segment
between two edges. We utilize this series of linear interpolations to
trace out the integer isocurves of our parametrization.

In order to make this approach work, we require that an isocurve
and a face intersect in exactly two points (or do not intersect at
all). �e only excluded cases are when an isocurve just touches a
face at a single vertex, or is aligned with one of the edges (Figure 8).
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Fig. 8. An integer isocurve γi can intersect a face f either on a single
vertex (a), on an edge (b), or go through its interior (c). We perturb the
parametrization by an infinitesimal amount to eliminate the first two cases.

While we never encountered these cases with our paramterizations,
we can easily eliminate the theoretical possibility as well. We �nd
the parameter values on vertices which are close to integers up to
machine precision, and translate them by −ϵ , where ϵ is a small pos-
itive number (we choose 10−7). If the vertex also has the minimum
parameter value in its 1-ring neighbourhood, we translate by +ϵ
instead, ensuring that we do not remove part of an integer isocurve.
�is ensures that no γi passes through a vertex, eliminating both
the problematic cases.

Starting from the parameter values stored at the vertices, we use
linear interpolation along edges to �nd the intersections of curves
from Γ1 and Γ2 with the edges to form the sets of nodes NE1 and
NE2, respectively (Figure 9a). �ese nodes are then used to �nd
nodes in the interior of faces, and their connectivity, as described
below.

Consider a face f and an isocurve γ1 ∈ Γ1 intersecting with it.
Let x0, x1 ∈ NE1 be the end points of the line of intersection. We
linearly interpolate the values of ϕ̃1 on x0 and x1 to �nd the points
of intersection of this isoline with all γ2 ∈ Γ2:

Nf ,γ1 =
{
y ∈ f ∩ γ1 | ϕ̃2(y) ∈ Z ∩

(
ϕ̃2(x0), ϕ̃2(x1)

)}
, (14)

where ϕ̃2(x0) ≤ ϕ̃2(x1) wlog. Nf ,γ1 is then sorted by ϕ̃2, the two
extrema are connected to x0 and x1, and consecutive points in the
ordered set are connected to each other. Doing this for all admissible
pairs (f ,γ1) gives the set NF of nodes lying on the intersections
between all pairs (γ1,γ2), and the set of elements E1 tracing all
γ1 ∈ Γ1 (Figure 9b–c).

�en, for each pair of intersecting face and γ2, we search for the
nodes amongNF lying on the intersection. �e nodes lying on each
γ2 are then connected to form the set of elements E2 (Figure 9d).
De�ne NE to be the disjoint union of NE1 and NE2, and N∂Ω to
be the subset of NE restricted to nodes lying on the boundary. In
the �nal step of the algorithm, we insert all nodes from N∂Ω into
a queue and trace out the integer isocurves emanating from them,
going through the faces it intersects until we hit the boundary again.
For each traced curve, we remove its endpoints from the queue.

4.4.1 3D Truss Layouts. In 3D we use Si to denote an arbitrary
end-to-end integer isosurface of ϕ̃i , and γi j to denote an arbitrary
end-to-end curve where both ϕ̃i and ϕ̃ j are constant integers. A�er
perturbing the parametrization, we compute the points of intersec-
tion of isosurfaces of each of the three parameters with the edges.
�en, we compute the intersection points of each γi j with all the

Fig. 9. In 2D, the truss extraction process begins by finding all points of
intersections between integer isocurves of ϕ̃ and edges of the input mesh (a).
Then, for each face of the mesh f , and an integer isocurve of ϕ̃1 intersecting
with it, points mapped to the integer grid are located (b). All such points
form the set of nodes N for the truss. Finally, the linear section of each ϕ̃1
isocurve is cut along these points to form the elements E1 for the output
truss (c), followed by a similar discretization and tracing process for ϕ̃2
isolines to form E2 (d). The union of E1 and E2 is the set of elements E of
the truss.

faces of the mesh. Finally, we linearly interpolate ϕ̃k (k , i, j) along
these isolines in each tet, and compute the intersections with all Sk
to �nd the elements of the truss. Note that while the perturbation
does not guarantee that every γi j passes through the interior of all
tets—it may just touch it at a face—we never encountered this case
in practice.

4.4.2 Handling the boundary. �e described procedure already
traces out the nodes on the boundary, as well the elements which
touch it. In 2D, we can add the boundary by tracing the elements on
each mesh edge individually—for an edge e = (x0, x1), sort all the
points in {x0, x1} t Ne by ϕ̃1 (or equivalently, by ϕ̃2) and connect
adjacent points in the sorted list.

In 3D, we need to trace the intersection of each Si with the
boundary ∂M, which comes down to performing the full 2D truss
extraction procedure for each pair of parameters {i, j} ∈

(3
2
)

on the
triangle mesh ∂M.

4.4.3 Simplification. Our extraction procedure can result in many
nodes which are geometric duplicates of each other, or are very close
to each other. However, we take care to get the correct graph topol-
ogy in E so that such duplicates can be easily removed by perform-
ing edge contraction operations on the graph with a small element
length threshold. Optionally, we can contract elements until we
have no nodes from NF le� (NE in 2D), except those on the bound-
ary. �is gives us the graph similar to that in Equations (12)–(13),
but with additional nodes and elements on the boundary.

We can simplify the boundary elements as well by contracting
elements containing the nodes inNE (boundary vertices in 2D). We
perform both these steps for all our results, but we do not remove
boundary nodes which lie on feature edges (feature vertices in 2D).
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�ese features are currently selected using dihedral angles with a
selection threshold of cos−1(0.9) (approx. 25°), but one could easily
plug in user-provided features. Finally, in 3D, we trace these feature
edges as well to preserve surface features.

4.5 Implementation Details
Our pipeline is implemented using a mix of MATLAB [�e Math-
Works, Inc. 2017] and C++ functions. Notably, we rely on C++ �nite
element analysis code and some underlying C++ functions of the
libigl library [Jacobson et al. 2016b] called via the matlab gptool-
box code base [Jacobson et al. 2016a]. Our frame ��ing, texture
parametrization, and mesh extraction algorithms are implemented
entirely in MATLAB. We use MATLAB’s fmincon to solve our frame
��ing optimization and quadprog to solve for the texture parama-
terization. We pledge to release all code and data pertaining to this
submission as opensource.

Fig. 10. A point compression is applied at the center of the top face of the
bar, with two di�erent boundary conditions: fixed le� and right edges on
the bo�om face (top), and fixed le� edge with right edge allowed to slide
horizontally (bo�om). Notice the change in the slope of the curves with the
change in the boundary conditions.

5 GEOMETRY CREATION
�e �nal stage in our pipeline is to create geometry from our ex-
tracted truss networks. To do this we specify a radius for each
integer isocurve. We then replace each piecewise linear segment
of the truss graph with a triangulated cylinder. �e union of these
cylinders, computed using libigl’s [Jacobson et al. 2016b] robust
boolean operations, results in a full 3D geometry

We show virtual renders of the optimized trusses produced by
our method in Figures 11 and 12. In all the �gures in the paper, the
input geometry is consistently shown in green, the forces applied
with orange arrows, the �xed points in maroon, and the locations
of load application with a striped orange pa�ern. For 3D results
optimized purely under gravity, the ground contacts are always set
to be �xed, and are not explicitly shown in the �gures.

Constructing volumetric Michell Trusses can be useful for many
engineering applications. Figure 12 shows some applications of our
method in the aerospace industry. We also show furniture design
applications (Figure 14).

We also performed FEM analysis to visualize the stress �elds in
several of our examples (Figure 15).

Fig. 11. A selected set of trusses produced by our method. (Top to bo�om)
quadcopter fixed at the propeller mounts and optimized for carrying a
parcel hanging from the bo�om face, a guitar optimized for load applied by
a guitar strap, a prosthetic leg and a rock climbing hold (shown in two views
for clarity). The le� column shows inputs, and the right column shows the
corresponding rendered results.

6 EXPRESSIVITY OF MICHELL TRUSSES
In this section we explore the e�ect of geometry and boundary con-
ditions on the output of our method. Figure 10 shows the results of
our algorithm on two bars. �e top bar has �xed Dirichlet boundary
conditions at each end while the bo�om allows free sliding of its
right-hand side. Note the di�erence in the produced trusses.
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Fig. 12. Aerospace applications: helicopter top pylon, airplane engine
bracket, helicopter rear pylon, and airplane engine/turbine pylon.

Figure 13 shows the e�ect of changing the loading conditions.
Two identical bars are subjected to twisting and compression re-
spectively. �e resulting truss structures adapt to provide maximum
structural strength.

Fig. 13. The di�erence caused by varying Neumann BCs, using bars under
torsion (le�) and compression (right).

Figure 14 shows two chairs with the same loading condition
applied. �e le� chair is a more standard, swivel chair design while
the right chair is produced using generative design so�ware. Note
the di�erences in the trusses due to the changes in geometry.

Fig. 14. Two chairs under identical loading but with di�erent geometries.

Fig. 15. We used linear FEM to simulate our trusses. The material assumed
for the visualizations is ABS-M30 plastic (yield strength 48 MPa), which we
used for fabricating the bridge, quadcopter frame, and bending bar. The
bending bar yielded at 403N. The simulation (a) shows excellent accuracy in
predicting the stress concentration regions, which agree with experimentally
observed fracture regions (b). The quadcopter frame is predicted to hold up
100N (10.2kg) of load successfully (c). The miniature (20cm wide) flat bridge
simulation (d) predicts no fracture at 912N (93kg) load. A real-world scale
arch-bridge made of 2.5cm thick elements (c) is predicted to hold 1.2 × 107

N (10 firetrucks).

Fig. 16. Visualization of the trusses extracted by our method by tracing the
integer isosurfaces of ϕ̃ . The full truss for the bridge problem (blue), and
truss elements traced on integer isosurfaces of each ϕ̃i in red, green, and
violet.

7 PERFORMANCE
Table 2 reports the performance of our algorithm for all the tested
3D problems—problem size, total running time, and the time taken
by individual steps of the algorithm. �e results indicate running
time on a 2017 Macbook Pro with Intel Core i7 Processor and 16 GB
of RAM. Note that most of our code is wri�en in MATLAB and is
not optimized for speed. Based on previous studies, we expect an
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order of magnitude or more speedup simply by implementing the
algorithm in C++ [Kjolstad et al. 2016].

8 CONCLUSION
By adopting a parametrization-based approach we have cra�ed
the �rst algorithm for the design of volumetric Michell Trusses
and shown that the algorithm can produce complex, aesthetically
pleasing output that is also strong. We believe our method serves
as an important companion to traditional approaches while also
providing engineers, architects, and designers with an exciting new
algorithmic tool.

Limitations and Future Work. �e most signi�cant limitation of
our approach is that it does not incorporate fabrication constraints.
Incorporating such constraints into design optimization is an ongo-
ing area of research. We are motivated by recent works to investigate
this further [Allaire et al. 2016; Martı́nez et al. 2018].

Our method produces trusses whose members are almost equally
spaced. �is can be problematic when the input geometry contains
very thin regions, such as the dragon shown in Figure 17, where
we completely miss the dragon’s horns. Fortunately, if the aim is to
build objects with a solid shell as the surface, we can still optimize
the internal structure.

In general, e�cient and �ne-grained user control of topology
optimization remains an interesting direction for future research.

Fig. 17. The trusses produced by our method may fail to cover thin features
like the dragon’s horns (le�). However, it is still useful for optimizing the
interior of an object meant to be fabricated with a solid surface (right).

Lastly, parameterized trusses can be used
to fabricate structures using new, exotic, fab-
rication methods such as extruders mounted
on robot arms with many degrees of free-
dom [MX3D 2017; Tam et al. 2015]. Such
robot arms can build large, self-supported
structures in a fraction of time required by
current generation 3D printers, and there-
fore, hold promise to be the additive manufacturing technique of
the future.
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Example # Vertices # Tets Total (s) Sim (s) Frames (s) Tex (s) Extract (s)

Bar (bending) 3457 16704 618.0 0.5 20.8 1.2 595.4
Bar (simply supported) 6913 34128 583.1 1.3 69.1 3.7 509.0
Climbing Hold 13753 68773 2189.7 3.7 209.8 14.8 1961.5
Guitar 10171 46840 689.9 1.3 54.1 7.2 627.2
Bar (torsion) 3457 16704 2239.2 0.4 17.3 1.0 2220.4
Bar (compression) 3457 16704 1411.4 0.5 15.5 1.0 1394.4
Chair (swivel) 7372 35021 4587.1 1.2 102.7 4.0 4479.3
Chair (generative) 9801 46187 6278.7 1.7 99.5 6.7 6170.8
Bar (�xed) 6913 34128 511.2 1.2 51.0 3.6 455.4
Pylon (helicopter, top) 8268 35449 831.9 1.0 44.4 4.3 782.3
Pylon (helicopter, rear) 4038 17358 609.4 0.3 17.8 1.2 590.0
Prosthetic 9097 44478 1380.3 1.5 77.2 5.9 1295.6
Bridge 4326 18808 648.5 0.5 89.8 1.5 556.6
Pylon (turbine) 2520 8932 225.9 0.2 8.0 0.4 217.3
Antenna arm 3264 13459 1345.6 0.3 13.0 0.7 1331.6
Jet engine bracket 28904 135649 3996.4 4.0 1501.2 52.1 2439.1
Bunny 19866 87443 1471.2 3.7 175.3 23.6 1268.6
�adcopter 7121 32826 671.2 1.0 45.9 3.7 620.7
Bridge (arch) 6457 31164 621.2 0.9 73.7 3.1 543.5

Table 2. Performance results for all the 3D testcases. All reported runtimes have been rounded o� to the nearest second.
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