
Multiscale Methods for Fabrication Design

by

Desai Chen

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Electrical Engineering and Computer Science

October 31, 2017

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wojciech Matusik

Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students



2



Multiscale Methods for Fabrication Design

by

Desai Chen

Submitted to the Department of Electrical Engineering and Computer Science
on October 31, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Modern manufacturing technologies such as 3D printing enable the fabrication of objects with
extraordinary complexity. Arranging materials to form functional structures can achieve a
much wider range of physical properties than in the constituent materials. Many applications
have been demonstrated in the fields of mechanics, acoustics, optics, and electromagnetics.
Unfortunately, it is difficult to design objects manually in the large combinatorial space of
possible designs. Computational design algorithms have been developed to automatically
design objects with specified physical properties. However, many types of physical proper-
ties are still very challenging to optimize because predictive and efficient simulations are not
available for problems such as high-resolution non-linear elasticity or dynamics with friction
and impact. For simpler problems such as linear elasticity, where accurate simulation is avail-
able, the simulation resolution handled by desktop workstations is still orders of magnitudes
below available printing resolutions.

We propose to speed up simulation and inverse design process of fabricable objects by
using multiscale methods. Our method computes coarse-scale simulation meshes with data-
drive material models. It improves the simulation efficiency while preserving the character-
istic deformation and motion of elastic objects. The first step in our method is to construct
a library of microstructures with their material properties such as Young’s modulus and
Poisson’s ratio. The range of achievable material properties is called the material property
gamut. We developed efficient sampling method to compute the gamut by focusing on finding
samples near and outside the currently sampled gamut. Next, with a pre-computed gamut,
functional objects can be simulated and designed using microstructures instead of the base
materials. This allows us to simulate and optimize complex objects at a much coarser scale
to improve simulation efficiency. The speed improvement leads to designs with as many as a
trillion voxels to match printer resolutions. It also enables computational design of dynamic
properties that can be faithfully reproduced in reality. In addition to efficient design opti-
mization, the gamut representation of the microstructure envelope provides a way to discover
templates of microstructures with extremal physical properties. In contrast to work where
such templates are constructed by hand, our work enables the first computational method
to automatically discovery microstructure templates that arise from voxel representations.
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Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Controlling the behavior of a deformable object is difficult— whether it is a biomechanically
accurate character model or a high performance 3D printable microstructure. Getting it right
requires constant iteration, either performed manually or driven by an automated system.
These design iterations often require many expensive physical prototypes that takes months
to make and test.

Figure 1-1: Designing a model bridge using simulation tools. The bridge is made of a
soft 3D-printing material. (a) Initial design. (b) Simulation predicts that the bridge sags
significantly. (c) A designer adds supporting arch to the bridge. (d) The bridge stands
without significant deformation.

Researchers and engineers use computational simulation tools to tinker with a virtual
design without laboriously constructing new prototypes. The performance of a design is
predicted using computation to save time and cost of design iterations (Figure 1-1). For
such computational tools to be useful, the simulation algorithm needs to be predictive so
that simulated results agree with real-world experiments. As a minimal requirement, the
simulation should correctly predict whether a significant design modification improves or

21



decreases the physical performance. On top of being predictive, the simulation should be
efficient to provide interactive feedback to a designer so that she can quickly try different
ideas to improve a design.

Taking a step further, a computational design algorithm can automatically tweak design
parameters using a predictive simulation algorithm in the loop. Since the simulation often
needs to evaluate hundreds or thousands of design variations, the simulation still needs to
be fast so that it does not take days to solve a design problem. The gold standard technique
for simulating the mechanical behavior of a deformable object is the finite element method
(FEM). While FEM is predictive to a high level of accuracy, it is notoriously slow, making
it a major computational bottleneck in the iterative design process. The slowness is because
FEM is accurate only with a sufficiently high-resolution discretization. To apply FEM to
design problems, we require simulation techniques that are fast and accurate even in the face
of constant tinkering.

Our goal in this thesis is to develop predictive and efficient FEM simulation tools to
enable computational design optimization of deformable objects. The key idea to achieve
our goal is coarsening. By combining fine elements into a coarse element, the same simulation
algorithm uses a much smaller number of degrees of freedom. Since the time complexity for
typical simulation algorithms grows superlinearly, coarsening methods can quickly boost the
speed of simulation algorithms. The cost associated with coarsening is loss of accuracy.
To address this problem, we propose several different techniques to compute new material
models for the coarse elements.

To test our simulation in practice, we implemented design optimization algorithms using
our simulation for both static and dynamic scenarios. For statics, we modify existing topol-
ogy optimization algorithms to handle coarse elements that contain microstructures. For
dynamic problems, we use a gradient-based optimization algorithm to find locally optimal
designs.

Our work draws inspiration from a diverse range of related works in computer graphics
and engineering. The next sections provide a brief review of related works on computational
design, efficient FEM simulation, and topology optimization. We then conclude this chapter
by laying out thesis overview and contributions.

1.1 Computational Design

Computational design concerns itself with optimizing the shape and material assignment in
an object in order to control its large scale behavior. Advances in computational design,
physical modeling and rapid prototyping have enabled the automated design and fabrication
of objects with customized physical properties. The range of fabrication methods and appli-
cations addressed in previous literature is very diverse spanning optical properties, inertia,
aerodynamic, strength, kinematics, elasticity etc.

In the area of designing optical properties, Hašan et al. [2010] and Dong et al. [2010]
provided methods for printing objects with desired subsurface scattering properties. Objects
have been made to reflect or bend light to create custom images [Kiser et al., 2013, Papas
et al., 2011, Weyrich et al., 2009]. The inertia tensor of an object has been designed for stable
standing [Prévost et al., 2013], floating [Musialski et al., 2015] and spinning [Bächer et al.,
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2014]. The aerodynamic behavior of rigid mechanisms has been controlled to design paper
airplanes [Umetani et al., 2014], kites [Martin et al., 2015], and multi-copters [Du et al.,
2016]. Many researchers have investigated how to improve structural strength of 3D-printed
objects [Langlois et al., 2016, Stava et al., 2012, Ulu et al., 2017, Wu et al., 2016, Zhou
et al., 2013]. More complex 3D-printed mechanisms have been designed to achieve specified
kinematic motions [Bächer et al., 2015, Coros et al., 2013, Megaro et al., 2017, Zhu et al.,
2012].

The most relevant line of work is the design and fabrication of deformable objects with
prescribed behavior under load. The behavior is usually controlled by altering the material
composition and shape of the designs. Bickel et al. [2010] used a measurement based material
model to design layered soft structures with prescribed non-linear static deformation behav-
ior. Chen et al. [2014] optimized the rest shape of a deformable object such that it deforms
the right way under gravity. Other researchers have used material composition and geometry
to control articulated characters [Bickel et al., 2012, Skouras et al., 2013]. Like these works,
one of our goals is to efficiently design compliant objects with desired deformation behavior.
These works assume a small set of available base materials such a stiff and a soft material.
To expand the range of material building blocks, the base materials are organized into larger
structures known as microstructures. These microstructures are then used in design opti-
mization loops to compose objects with specified compliant properties [Panetta et al., 2015,
Schumacher et al., 2015, Zhu et al., 2017].

1.2 Efficient FEM Simulation

As mentioned, design and fabrication of deformable objects is common in engineering and
graphics [Bendsøe and Sigmund, 2004, Kou et al., 2012, McAdams et al., 2011]. Efficient
FEM simulation plays an important role in automating the design process. We can broadly
partition the space of approaches for optimizing FEM simulation into two categories. We
term the first category numerical approaches. These methods use fast matrix inversion
techniques and other insights about the algebra of the FEM to increase its performance.
Simulators based on the multigrid method [McAdams et al., 2011, Peraire et al., 1992, Zhu
et al., 2010] and Krylov subspace techniques [Patterson et al., 2012] have yielded impressive
performance increases. Other hierarchical numerical approaches, as well as highly parallel
techniques, have also been applied to improve the time required to perform complex simu-
lations [Farhat and Roux, 1991, Mandel, 1993]. Finally, Bouaziz et al. [2014] have proposed
specially designed energy functions and an alternating time-integrator for efficient simulation
of dynamics.

The second set of methods are reduction approaches. These algorithms attempt to in-
telligently decouple or remove degrees of freedom (DOFs) from the simulated system. The
reduction leads to smaller systems, resulting in a massive increase in performance, with some
decrease in accuracy. Our algorithm falls into this category. Note, however, that numerical
and reduction approaches need not be mutually exclusive. For example, since our algorithm
uses the same type of spatial discretization as the underlying FEM, faster numerical algo-
rithms such as multigrid will improve the efficiency of our algorithm. Algorithms based on
reduction approaches mitigate the inevitable increase in error using one or more of three ap-
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proaches: adaptive remeshing, higher-order shape functions, or adaption of the constitutive
model.

Adaptive remeshing alters the resolution of the simulation discretization in response to
various metrics (stress, strain, etc.). Such methods seek to maintain an optimal number of
elements and thus achieve reasonable performance. Adaptive remeshing has proven useful
for simulating thin sheets such as cloth [Narain et al., 2012], paper [Narain et al., 2013],
as well as elastoplastic solids [Wicke et al., 2010] and solid-fluid mixtures [Clausen et al.,
2013]. More general basis refinement approaches have also been suggested [Debunne et al.,
2001, Grinspun et al., 2002]. While these methods do improve the performance of simulation
algorithms, they have some drawbacks. First, they often require complicated geometric
operations which can be time consuming to implement. Second, they introduce elements of
varying size into the FEM discretization. This can lead to poor numerical conditioning if not
done carefully. Finally, in order to maintain accuracy, it may still be necessary to introduce
many fine elements, leading to slow performance.

Alternatively, one can turn to P-adaptivity for help. P-adaptivity refers to introducing
higher-order basis functions to increase accuracy during simulation [Szabó et al., 2004].
Unfortunately, these methods suffer from requiring complicated mesh generation schemes
and are not well-suited for iterative design problems. An alternative approach to remeshing
is to use higher order shape functions to more accurately represent the object’s motion using
a small set of DOFs. Modal simulation techniques fall into this category [Barbič and James,
2005, Krysl et al., 2001, Shabana, 1991]. Substructuring [Barbič and Zhao, 2011] decomposes
an input geometry into a collection of basis parts, performing modal reduction on each
one. These basis parts can be reused to construct new global structures. Other approaches
involve computing physically meaningful shape functions as an offline preprocessing step.
For instance, Nesme et al. [2009] compute shape functions based on the static configuration
of a high resolution element mesh induced via a small deformation of each vertex. Faure et al.
[2011] use skinning transformations as shape functions to simulate complex objects using a
small number of frames. Gilles et al. [2011] show how to compute material-aware shape
functions for these framebased models, taking into account the linearized object compliance.
Both Nesme et al. [2009] and Faure et al. [2011] accurately capture material behavior in
the linear regime. However, because their shape functions cannot change with the deformed
state of the material, they do not accurately capture the full, non-linear behavior of an elastic
object. Our non-linear coarse material models rectify this problem. Computing material-
aware shape functions improves both the speed and accuracy of the simulation. However,
these methods require a precomputation step that assumes a fixed material distribution and
geometry. If the material distribution changes, these shape functions must be recomputed.
This step becomes a bottleneck in applications that require constantly changing material
parameters.

The final coarsening technique involves reducing the degrees of freedom of a mesh while
simultaneously augmenting the constitutive model at each element, rather than the shape
functions. Numerical coarsening is an extension of analytical homogenization, which seeks to
compute optimal, averaged material for heterogeneous structures [Farmer, 2002, Guedes and
Kikuchi, 1990]. Numerical coarsening, for instance, has been applied to linearly (in terms
of material displacement) elastic tetrahedral finite elements [Kharevych et al., 2009]. These
methods require an expensive precomputation step (a series of static solves) that must be
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repeated when the material content or the geometry of an object changes. This step holds
these methods back from being suitable for iterative design problems.

1.3 Topology Optimization

Topology optimization is a class of methods for optimizing material distributions within a
design layout while satisfying given constraints [Bendsøe and Sigmund, 2004]. These meth-
ods typically work with linear elastic materials since it is easier to take the derivative of the
objective function in this case. Topology optimization was originally developed for structural
design problems [Bendsøe, 1989] where the deformation is small enough to be modeled by lin-
ear elasticity. It has been extended to a variety of problems including compliant mechanism
design [Sigmund, 1997], mass transfer [Challis and Guest, 2009], metamaterial design [Cad-
man et al., 2013, Sigmund, 2000], multifunctional structure design [Yan et al., 2015], and
coupled structure-appearance optimization [Martínez et al., 2015]. Many algorithms have
been proposed to numerically solve the optimization problem itself. We refer to the book
by Sigmund and Maute [2013] for a complete review.

In the very popular SIMP (Solid Isotropic Materials with Penalization) method, the
presence of material in a given cell is controlled by locally varying its density. A binary design
is eventually achieved by penalizing intermediate values for these densities. In practice, this
method works well for two-material designs (e.g., a material and a void), but generalizing
this method to robustly handle higher dimensional material spaces remains challenging.
Another class of methods rely on homogenization. They replace the material in each voxel
of the object by a mixture of the base materials that is known to be locally optimal for the
original problem [Allaire, 2012]. While very powerful, these methods are specialized for the
minimum compliance problem, for which the link between stiffness and optimal density can
be analytically formulated. In a sense, our work can been seen as a generalization of this
type of approaches to handle arbitrary materials in broader contexts.

Standard topology optimization methods suffer from a major drawback. The parametriza-
tion of the problem at the voxel level makes them extremely expensive and impedes their use
on high resolutions models such as the ones generated by modern 3D printing hardware. To
reduce the number of degrees of freedom for simulation and optimization, Rodrigues et al.
[2002] proposed an interesting formulation where microstructure designs and macroscopic
layouts of the underlying microstructures are hierarchically coupled and treated simultane-
ously. This initial work has been extended in multiple ways [Coelho et al., 2008, Nakshatrala
et al., 2013, Xia and Breitkopf, 2014, Yan et al., 2014]. However, these methods still need
to handle variables defined at the microstructure level and therefore they remain relatively
costly. The closest to our work is probably the method proposed by Xia and Breitkopf
[2015b], which also relies on a database to speed up computations. However, their work
specifically targets minimum compliance problem in the structural design which allows them
to approximate the macroscale behaviour of the microstructures with a particular strain-
based interpolating function.
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1.4 Thesis Overview

Chapter 2 introduces FEM for simulating elastic materials. Building on existing material
models, we propose data-driven finite elements or DDFEM, the first simulation method
optimized for geometric and material design problems under static scenarios. We improve
simulation efficiency by coarsening, where we replace blocks of fine elements with coarse
elements. We then provide example energy functions for modeling coarse blocks made of
heterogeneous Neo-Hookean materials. To quickly find coarse material models for different
designs, we use a database to store combinations of fine blocks and their corresponding
elastic potential energy functions.

Chapter 3 presents design optimization algorithms based on coarsening. Here the coarse
blocks are called microstructures. Microstructures can achieve a much wider range of ma-
terial properties than the range spanned by the base materials. To automatically explore
the achievable material properties of microstructures, we propose to represent the space of
material properties as a level set. Based on the level set representation, we develop discrete
and continuous sampling methods to explore the space of microstructures more efficiently.
We computed the material property space of cubic-symmetric microstructures and discov-
ered families of microstructures that achieves extremal elastic properties. In addition, the
level set representation is incorporated into topology optimization algorithms to automati-
cally design objects made of microstructures instead of homogeneous material blocks. This
two-scale topology optimization method allows us to design high-resolution objects such as
a functional gripping mechanism and a bridge model with maximum stiffness.

Chapter 4 investigates the possibility of designing real-world high-speed dynamic mecha-
nism using coarsened simulations. We propose dynamics-aware coarsening (DAC) to model
the dynamic elastic behavior using coarse elements. For impact modeling, we propose
boundary-balancing impact (BBI) targeted at inelastic impact of elastic objects. With these
methods, we optimize and fabricate jumping mechanisms that are challenging to design by
hand.

1.5 Contributions

∙ DDFEM is the first algorithm for fast runtime coarsening of nonlinear elastic models
that can handle changing geometry and material assignment. Given a detailed design,
DDFEM coarsens the mesh at interactive rates to yield speed gains of up to two
orders of magnitude. The fast coarsening is implemented by precomputing the material
properties of coarse elements composed of fine elements with different materials. The
material properties are inferred from the deformations of coarse elements under likely
forces. A compact material model is developed to represent the coarse element behavior
using a small number of parameters.

∙ Two-scale topology optimization extends existing topology optimization methods to
work with microstructures. The extension allows us to optimize structures made of
one trillion voxels on a single computer. The software pipeline first precomputes the
achievable material properties of microstructures. Instead of optimizing material mix-
ture ratio at each cell, our algorithm optimizes the material properties at each cell
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while guaranteeing that all material properties are within the achievable range. Our
algorithm ensures that the final result is realizable since each cell contains a material
property that can be mapped to a microstructure.

∙ Our efficient microstructure sampling algorithm leads to the computational discov-
ery of microstructure templates with extremal elastic properties. Starting with voxel
representation of microstructures, our method automatically cluster similar structures
into families and extract parametric templates from the families. The templates are
controlled by a small number of parameters to allow more efficient sampling and tweak-
ing. They also reveal the underlying structural similarity that are crucial achieving
the extremal physical properties.

∙ Dynamics-aware coarsening (DAC) computes coarse material properties geared towards
dynamic scenarios. DAC achieves a 70𝑥 simulation speed gain while preserving the
overall dynamic motion of designs. The material parameters are computed such that
the primary modal frequency of a coarse mesh matches the frequency of a high res-
olution mesh or a physical model. This allows us to simulate dynamic trajectories
of non-linear elastic objects at much faster rates while still matching the macroscopic
behavior.

∙ Boundary-balancing impact (BBI) improves state of the art impact models to more
accurately model real-world inelastic impact. We use the combination of DAC and
BBI to predict the behavior of elastic mechanisms with loading, contact, friction and
impact. For the first time, the simulation of elastic dynamics is predictive and efficient
enough to be used in designing physical objects. To show this, we used our simulation
in an optimization loop to improve the designs of real-world jumping mechanisms.
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Chapter 2

Data-Driven Coarsening of Finite

Elements

2.1 Background

2.1.1 The Finite Element Method

The finite element method (FEM) [Ciarlet, 2002] is a numerical method to approximate
solutions to partial differential equations. The function domain Ω is divided into a finite
number of elements 𝐸𝑘. In most common implementations, a polynomial function is defined
over each element. These polynomials form a basis for finite-dimensional approximations to
the solution.

This thesis uses the eight-node hexahedron element to perform all of the mechanical
analysis. The eight-node hexahedron element is the simplest of the hexahedron family. An
element is embedded in R3 with its eight nodal positions given by X𝑖. The nodal positions
must cooperate to guarantee that the hexahedron is not inverted. In this work, most elements
are cubes, and therefore inversion of the rest configuration is avoided by construction. An
element represents continuous functions by trilinearly interpolating function values defined
on its eight nodes. Each node 𝑖 is assigned a real value 𝑢(X𝑖) to define a continuously varying
function. For any point X ∈ R3 inside the element, the interpolated value on X is given by

𝑢(X) =
∑︁
𝑖

𝑁𝑖(X)𝑢(X𝑖),

for some location-dependent weighting functions 𝑁𝑖. These weighting functions are called
shape functions.

In order to write down the expression for 𝑁𝑖, we need to introduce the standard quadri-
lateral or hexahedral element (Figure 2-1). The standard hexahedron is just a cube centered
at the origin spanning [−1, 1]3. The axis are labeled with 𝜉, 𝜂, 𝜁 to distinguish from the space
that X resides in. This new coordinate system is known as the isoparametric hexahedral
coordinates or more commonly referred to as natural coordinates. The nodal positions
in the natural coordinates are listed in Table 2.1. For a point 𝜒 = (𝜉, 𝜂, 𝜁) in the natural
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Figure 2-1: Standard elements for 2D quadrilateral (left) and 3D hexahedral elements (right).
The standard element spans [−1, 1] in each axis to facilitate Gaussian quadrature rules.
Nodes are marked with their indices.

Index 𝜉𝑖 𝜂𝑖 𝜁𝑖
1 -1 -1 -1
2 -1 -1 1
3 -1 1 -1
4 -1 1 1
5 1 -1 -1
6 1 -1 1
7 1 1 -1
8 1 1 1

Table 2.1: Nodal positions of the standard hexahedron element in the natural coordinates.
Coincidentally, these coordinate values can also be used to define the trilinear interpolation
weights.

coordinates, its interpolation weights are defined as in Equation 2.1.

𝑁𝑖(𝜒) =
1

8
(1 + 𝜉𝑖𝜉)(1 + 𝜂𝑖𝜂)(1 + 𝜁𝑖𝜁). (2.1)

Note that the sum of the weights is always 1 for any point inside the element. Suppose now
we define a “density” value of 1 on each of its eight vertices, we can compute the total mass
of the element by

𝑚𝑎𝑠𝑠 =

∫︁ 1

−1

∫︁ 1

−1

∫︁ 1

−1

∑︁
𝑖

𝑤𝑖 · 1 𝑑𝜉 𝑑𝜂 𝑑𝜁 =

∫︁ 1

−1

∫︁ 1

−1

∫︁ 1

−1

1 𝑑𝜉 𝑑𝜂 𝑑𝜁 = 8.

This is simply the volume of the standard element multiplied by the density. The fact that
the eight nodal basis functions form a partition of unity is crucial for physical meanings of
quantities defined on the element.
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With the interpolation function fully defined in the natural coordinates, we can use it to
map a point 𝜒 in natural coordinates to a point X inside a general hexahedron element with
nodal positions X𝑖. Note that the equation interpolates a vector-valued function with each
coordinate interpolated independently.

X =
∑︁
𝑖

𝑁𝑖(𝜒)X𝑖. (2.2)

2.1.2 Modeling Elastic Materials

An object made of elastic materials tend to return to its rest shape when deformed by
external forces. The direction and strength of the tendency to restore is described by the
elastic forces. To mathematically model the behavior of a small piece of material, we first use
finite elements to approximate its deformed shapes. A hexahedron element models a piece of
elastic material that can deform by changing its nodal positions. The internal volume deforms
by following the nodal displacements using trilinear interpolation. Of course real materials
do not have to deform according to piece-wise trilinear interpolation. The interpolation is a
way to approximate real deformations using a finite number of degrees of freedom (DOFs).
More precisely, for an element with a rest configuration given by X𝑖, its nodes can be moved
to new positions x𝑖 by displacements u𝑖, i.e., x𝑖 = X𝑖 + u𝑖. For any point X inside the
element with known natural coordinates 𝜒, its displacement u(X) is given by interpolation

u(X) =
∑︁
𝑖

𝑁𝑖(𝜒)u𝑖. (2.3)

Note the distinction between X and x. X is defined as a point in the reference space

that represents the undeformed shape of an object. The lower case x lives in the deformed
space that represents the deformed configuration of an object.

To simplify notation, 𝑁𝑖(𝜉) will be written as 𝑁𝑖. The deformation of an object is
quantified using strain measures, which is defined in terms of the difference in displacement
between nearby points. Intuitively, if u(X) is constant, then the displacement field is just
a translation. In this case, the material is undeformed and should not contain any strain.
More generally, the difference of displacement between nearby points can be written using
derivatives,

F =
𝜕u

𝜕X
+ I =

⎛⎜⎜⎜⎜⎜⎝
𝜕𝑢1

𝜕𝑋1

𝜕𝑢1

𝜕𝑋2

𝜕𝑢1

𝜕𝑋3
𝜕𝑢2

𝜕𝑋1

𝜕𝑢2

𝜕𝑋2

𝜕𝑢2

𝜕𝑋3
𝜕𝑢3

𝜕𝑋1

𝜕𝑢3

𝜕𝑋2

𝜕𝑢3

𝜕𝑋3

⎞⎟⎟⎟⎟⎟⎠ + I.

The matrix F is the deformation gradient and I is the identity matrix. While we do not
have a closed-form expression relating u and X, we have Equation 2.2 and 2.3 that relate u
and X through 𝜒. The term 𝜕u

𝜕X
can be re-written using the chain rule,

𝜕u

𝜕X
=

𝜕u

𝜕𝜒

𝜕𝜒

𝜕X
= (

∑︁
𝑖

u𝑖
𝑑𝑁𝑖

𝑑𝜒
)(
𝜕X

𝜕𝜒
)−1 (2.4)
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The matrix 𝜕X
𝜕𝜒

is called the Jacobian matrix of X with respect to 𝜒 and is written as

J =
𝜕X

𝜕𝜒
=

∑︁
𝑖

X𝑖
𝑑𝑁𝑖

𝑑𝜒
.

By convention, 𝑑𝑁𝑖

𝑑𝜒
is a 1× 3 row vector. The term X𝑖

𝑑𝑁𝑖

𝑑𝜒
is an outer product that produces

a 3× 3 matrix.

Given the full expression for the deformation gradient F, we can now define elastic energy
densities. The elastic energy density function Ψ(F) computes a non-negative energy value
given a deformation gradient. This function fully defines the elastic behavior of a piece of
material. Integrating Ψ over the domain Ω of an element in the reference space yields the
total elastic energy contained in that element.

𝐸(x1, ...,x8) =

∫︁
Ω

Ψ𝑑𝑉.

Differentiating 𝐸 with respect to nodal positions x𝑖 gives us the opposite direction of nodal
elastic forces

−f𝑖 =
𝑑𝐸

𝑑x𝑖

=

∫︁
Ω

𝑑Ψ(F)

𝑑F

𝑑F

𝑑x𝑖

𝑑𝑉 =

∫︁
Ω

P(F)
𝑑F

𝑑x𝑖

𝑑𝑉,

Where

P(F) =
𝑑Ψ(F)

𝑑F
.

P(F) is called the fist Piola-Kirchhoff stress. It transforms a normal vector in the reference
space to a force acting in the deformed configuration divided by area in the reference space.
Integrating in the reference space is not easy since the element is not necessarily a rectangular
shape. By change of variables, we can integrate in natural coordinates in the set Ω𝜒 =
[−1, 1]3. ∫︁

Ω

P(F)
𝑑F

𝑑x𝑖

𝑑𝑉 =

∫︁
Ω𝜒

P(F)
𝑑F

𝑑x𝑖

| detJ|𝑑𝑉

=

∫︁
Ω𝜒

P(F)J−𝑇 𝑑𝑁𝑖

𝑑𝜒
detJ 𝑑𝑉.

Here we dropped the absolute value sign because the undeformed element is required to have
positive determinant everywhere. To numerically evaluate the integral, we use Gaussian
quadrature rules. For example, the two-point Gaussian quadrature rule places quadrature

points at ±
√︁

1
3
in natural coordinates, which results in 8 quadrature points with equal

weights in 3D. For each quadrature point 𝑗, we evaluate the integrand and multiply by the
quadrature weight 𝑤𝑗. The integral is written as a summation

−f𝑖 =
∑︁
𝑗

𝑤𝑗P(Fj)J
−𝑇 𝑑𝑁𝑖

𝑑𝜒
detJ.
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2.1.3 Constitutive Models

In the above section, we defined the strain energy density function Ψ. We also showed how to
use it to compute elastic energy and nodal forces without providing concrete formulas for Ψ.
The choice of Ψ determines the constitutive model of elasticity, i.e. the relationship between
strain measures and stress. Our work primarily uses two kinds of constitutive models: linear
elasticity and Neo-Hookean model. For linear elasticity, we first define the infinitesimal strain
tensor

𝜖 =
1

2
(F + F𝑇 )− 𝐼.

This strain tensor is a symmetric matrix. The stress tensor derived from this strain measure
is also a symmetric matrix. Symmetry of the stress tensor is a necessary condition for
conservation of linear and angular momentum. In other words, stress and internal elastic
forces should not cause any change in total linear or angular momentum. The strain energy
density function for isotropic linear elasticity is

Ψ(F) = 𝜇𝜖 : 𝜖 +
𝜆

2
𝑡𝑟2(𝜖).

𝜇 is a material parameter called shear modulus and 𝜆 is Lamé’s first parameter. 𝑡𝑟(𝜖) is the
trace of the strain tensor. Differentiate Ψ to obtain

P(F) = 𝜇(F + F𝑇 − 2I) + 𝜆𝑡𝑟(F− I)I.

For anisotropic linear elasticity, the constitutive equation is written as

𝜎 = C𝜖, (2.5)

where 𝜎 is the 3× 3 Cauchy stress tensor, C is a fourth-order 3× 3× 3× 3 tensor called the
tensor of elasticity. The term C𝜖 is a summation of component-wise products. In Einstein
notation,

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙.

Cauchy stress relates to the first Piola-Kirchhoff stress by

𝜎 =
1

detF
PF𝑇

The corresponding strain energy density function is

Ψ(𝜖) =
1

2
C𝜖2.

To simplify notations, the stress and strain tensors are written as vectors instead of matrices.
Using Voigt notation, a stress tensor of the form

𝜎 =

⎛⎝𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

⎞⎠
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is rewritten as
𝜎 = (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑥𝑦, 𝜎𝑦𝑧, 𝜎𝑧𝑥).

This allows the tensor of elasticity to be written as a 6 × 6 matrix. For orthotropic linear
materials, C takes the following form

C =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐶1111 𝐶1122 𝐶1133 0 0 0

𝐶2222 𝐶2233 0 0 0
𝐶3333 0 0 0

𝐶1212 0 0
𝑆𝑦𝑚𝑚 𝐶2323 0

𝐶1313

⎞⎟⎟⎟⎟⎟⎟⎠ .

For a more restricted subset of materials with cubic symmetry, C is specified by three
material parameters: Young’s modulus 𝐸, Poisson’s ratio 𝜈, and shear modulus 𝐺 or 𝜇.

C =

⎛⎜⎜⎜⎜⎜⎜⎝

(1− 𝜈)�̂� 𝜈�̂� 𝜈�̂� 0 0 0

(1− 𝜈)�̂� 𝜈�̂� 0 0 0

(1− 𝜈)�̂� 0 0 0
𝜇 0 0

𝑆𝑦𝑚𝑚 𝜇 0
𝜇

⎞⎟⎟⎟⎟⎟⎟⎠ , �̂� =
𝐸

(1− 2𝜈)(1 + 𝜈)
.

The advantage of the linear elasticity is that it assumes a linear relationship between stress
and strain. This leads to a linear relationship between nodal displacements and nodal forces
as follows

KU = −f .

Here K is called the stiffness matrix given by

K =
𝜕2Ψ

𝜕U2
.

U is the concatenated nodal displacement vector [u1,u2, ...,u8] and f is the concatenated
internal nodal force vector. Computing the deformation under external boundary conditions
and forces requires only a single linear solve

U = K−1f𝑒𝑥𝑡,

given sufficient boundary conditions. The stiffness matrix is sparse and positive semi-definite
(positive definite with enough constraints). A wide class of linear solvers have been developed
for such linear systems. To see the linear relationship between displacements and force, we
just need to derive the linear relationship between 𝜖 and u𝑖 from Equation 2.4 and combine
it with Equation 2.5. For a point X ∈ R3, we will use superscripts to denote its individual
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coordinates. Define the strain-displacement matrix

B(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑𝑁1

𝑑X1
0 0 ...

0
𝑑𝑁1

𝑑X2
0 ...

0 0
𝑑𝑁1

𝑑X3
...

𝑑𝑁1

𝑑X2

𝑑𝑁1

𝑑X1
0 ...

0
𝑑𝑁1

𝑑X3

𝑑𝑁1

𝑑X2
...

𝑑𝑁1

𝑑X3
0

𝑑𝑁1

𝑑X1
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For an eight-node hexahedron, this matrix has 3 × 8 = 24 columns. This matrix computes
the strain tensor at a point X given nodal displacements

𝜖(X) = B(X)U.

This linear relationship concludes our claim that linear elasticity model defines a linear
relationship between nodal displacements and nodal forces. Further, using quadrature rules,
we can numerically evaluate K as

K =
∑︁
𝑗

𝑤𝑗B(X𝑗)CB(X𝑗) detJ.

The downside of linear elasticity is that it does not handle rotation properly. An elastic
object undergoing a rigid rotation should contain zero elastic energy. If we let F = R for
some rotation matrix R, the resulting energy measure is generally non-zero. Because of this
limitation, linear elasticity is useful only when the deformation is small with respect to the
overall size of the object. When an object undergoes large deformations such as buckling,
it often admits many potential static equilibrium configurations, linear elasticity always
predict a single solution with little buckling since its elastic energy landscape is convex with
a unique local minimum. Additionally, linear elasticity does not preserve volume according
to the Poisson’s ratio parameter. In fact, elements can easily invert into non-physical states.

To address the rotation problem, non-linear elasticity models such as the corotated linear
elasticity model and the Saint-Venant Kirchhoff model are developed to be rotation invariant.
However, these models still allow an element to invert and do not preserve volume. We use the
Neo-Hookean material model for non-linear elasticity. It resists inverting, and approximately
preserves volume according to Poisson’s ratio. The strain energy density of Neo-Hookean
model is

Ψ(F) =
𝜇

2
(𝐼1 − 3)− 𝜇 log detF +

𝜆

2
(log detF)2,

where the first isotropic invariant is

𝐼1 = 𝑡𝑟(F𝑇F).
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The first Piola-Kirchhoff stress is

P(F) = 𝜇(F− F−𝑇 ) + 𝜆(log detF)F−𝑇 .

2.2 Data-Driven Coarsening Overview

Objects with high-resolution, heterogeneous elastic materials are everywhere: from the out-
put of multimaterial 3D printers to virtual characters gracing the screen in our summer
blockbusters. Designing such objects is made possible by the tight coupling of design tools
and numerical simulation which allows designers or automatic algorithms to update geom-
etry or material parameters and subsequently estimate the physical effects of the change.
Fast, accurate simulation techniques that can handle runtime changes in geometry and ma-
terial composition are a necessity for such iterative design algorithms. There have been a
large number of works on speeding up FEM simulations, and these speed improvements have
enabled FEM to be used in many performance critical tasks such as computer animation,
surgical training, and virtual/augmented reality. Even though techniques such as model re-
duction or numerical coarsening can achieve order-of-magnitude performance increases, they
require expensive precomputation phases, typically on the order of minutes for large meshes.
This precomputation requires knowledge of an object’s geometry and material composition a
priori, something that is not known during a design task. When the user updates the model
by changing the geometry or the material distribution, the preprocessing step must be run
again. As shown in Figure 2-2a, since this step is inside the design loop, the user cannot get
rapid feedback on the changes made to the object.

We propose Data-Driven FEM (DDFEM), a new simulation methodology that removes
these limitations and is thus extremely well suited to the types of design problems discussed
above. We divide an object into a set of deformable voxels using embedded finite elements
and coarsen these voxels hierarchically. A custom coarse element database is populated with
materials that minimize the error incurred by coarsening. This database is learned once
in a completely offline fashion and depends only on the set of materials to be used by the
deformable object and not on the actual material distribution and geometry. At runtime
we use the database to perform fast coarsening of an FEM mesh in a way that is agnostic
to changes in geometry and material composition of the object. The key features of the
algorithm are its ability to handle arbitrary, nonlinear elastic constitutive models as well as
to avoid expensive precomputation within the design loop (Figure 2-2b). DDFEM is the
first algorithm optimized for interactive design of non-linear elastic objects.
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Figure 2-2: (a) In a typical method, the preprocessing step is offline, making the design loop
slow. (b) In our method, we move the timeconsuming offline computation outside of the
design loop.
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DDFEM is a combination of embedded finite elements and hierarchical coarsening. In the
remainder of this section, we discuss the problem of coarsening and introduce the notion of
a material palette. We conclude by summarizing the two main stages of DDFEMâĂŤoffline
coarse material construction and online coarsening.

Coarsening for finite elements The key component of our DDFEM is coarsening. Coars-
ening reduces the number of vertices in a finite element simulation mesh in order to improve
runtime performance. Since simply removing vertices can greatly reduce the accuracy of the
simulation, coarsening schemes also assign new materials to coarsened elements to minimize
this effect. We regard the global coarsening of a simulation mesh as the result of many
local coarsening operations which map from contiguous subsets of fine elements with applied
materials to coarse elements with new, optimized materials. Our goal is to precompute
these optimized materials so that coarsening is fast at runtime. Below we discuss how to
make such a precomputation tractable beginning with our choice of finite element simulation
methodology.

Conforming vs. embedded finite elements The defining feature of conforming finite
element methods is that the simulation mesh is aligned with the geometry of the object
being simulated. One obvious feature of conforming meshes is that the mesh itself is a
function of the input geometry. This means that the output of a local coarsening operator
(the coarsened mesh) will also be a function of the input geometry. Also, the new material
computed by each local coarsening operator will be a function of input geometry. This
dependence on input geometry is a significant issue to overcome if we wish to precompute
coarsened materials because, in design problems, the input geometry is in constant flux. The
number of precomputed coarse materials now depends on the local material assignment on the
simulation mesh and the input geometry. Thus space of coarsened materials is prohibitively
large. To mitigate this we turn to embedded finite elements. These methods embed the
geometry to be simulated into the simulation mesh with no regard for whether the mesh
conforms to the geometry or not. Thus an identical simulation mesh can be used for any
input geometry. Local coarsening operations on the embedded mesh yield identical coarse
elements and the optimized coarse material depends only on the local material distribution
on the simulation mesh. This significantly reduces the size of the coarsened material space.
In this paper we embed all simulation geometry into a hexahedral simulation mesh.

Material palette We further shrink the space of coarsening operators using an observation
about material design. Designers do not work in a continuous space of materials but limit
themselves to a relatively compact set (e.g. rubber, wood, steel) related to their problem
domain. We call these discrete sets of materials palettes and denote them 𝒫 = {ℳ1, ...,ℳ𝑛}.
Hereℳ𝑖 denotes a specific material model in 𝒫 , and 𝑛 is the size of the material palette. In
this work we limit ourselves to nonlinear hyper-elastic materials, which means that eachℳ𝑖

can be represented by a strain energy density function. We also include a void (or empty)
material in every palette. This allows us to perform topology changes in the same manner
in which we perform material assignment updates.
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Algorithms With the material palette in hand, we can now define our algorithm, which is
divided into two distinct phases: an offline database construction stage and an online
coarsening stage. Below we detail the input, output, and steps of each stage:

Offline Database Construction
∙ INPUT: A palette of materials to be applied to high-resolution hexahedral simulation
meshes 𝒫0

∙ OUTPUT: A new palette of coarse elements, 𝒫1, and a mapping from fine material
combinations to the coarsened materials in 𝒫1.
∙ STEPS:
∙ FOR EACH material combination applied to a 2×2×2 cube of high resolution ele-
ments
∙ Sample potential energy function of 2×2×2 block
∙ Fit coarse hexahedral element material parameters
∙ Add coarse element to 𝒫1 using high resolution
material IDs as database key

∙ END
Online Coarsening

∙ INPUT: High resolution hexahedral simulation mesh with
material IDs and
coarsened hexahedral simulation mesh

∙ OUTPUT: Material assignments for coarse mesh
∙ STEPS:
∙ FOR EACH 2×2×2 block in the high resolution mesh

∙ Replace with single coarse element
∙ Assign material from 𝒫1 using high resolution
material IDs as database key

∙ END

Hierarchical coarsening We stress that both stages of the DDFEM algorithm can be
applied hierarchically. Given the first level of coarse materials, 𝒫1, we can construct a
material library, 𝒫2, for the second level by using 𝒫1 as an input material palette. At
runtime, the coarsening algorithm looks up materials from 𝒫2 to replace each 2×2×2 coarse
block with a single element.

Having introduced the broad strokes of the DDFEM scheme, we move on to a detailed
explanation of each algorithmic component. First we discuss database construction in sec-
tion 2.3, followed by the runtime component in section 2.4. We end by demonstrating the
speed and accuracy of DDFEM in section 2.5.

2.3 Coarse Material Database Construction

We construct our coarse material database using a potential energy fitting approach. This
is valid due to the hyperelastic materials that make up our material palettes. Material
fitting considers 2×2×2 blocks of high-resolution hexahedral elements (denoted ℰ0). For
each element 𝐸0

𝑘 ∈ ℰ0, its material is referred to as ℳ0
𝑘 ∈ 𝒫0. Note that ℰ refers to a
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set of elements and 𝐸 refers to a single element. Given ℰ0, we can sample its deformation
space, and usingℳ0

𝑘, compute the potential energy 𝑉 0 for each sample. Now we must find
a coarse material model that, when applied to a single coarse element E 1 best approximates
𝑉 0. This is accomplished by fitting a coarse potential energy function , 𝑉 1, to the set of
deformation/energy samples. The fitted energy is stored in the coarse material database and
indexed by the material indices ofℳ0.

2.3.1 Coarse Material Model

Our fitting approach depends on choosing a good coarse material model. The general hyper-
elastic material model for a finite element with degrees of freedom u can be represented as
an energy function 𝑉 (𝑢,𝑝) parameterized by 𝑝. For an eight-node hexahedron element, 𝑢
is a 24× 1 column vector of nodal displacements 𝑢 = (𝑢1,𝑥, 𝑢1,𝑦, 𝑢1,𝑧..., 𝑢8,𝑥, 𝑢8,𝑦, 𝑢8,𝑧)

𝑇 . The
energy function has to comply with many requirements to be physically meaningful Marsden
and Hughes [2012]. Here we list some important requirements:

1. Invariance under rigid transformation. Given any block-diagonal rotation matrix 𝑅
composed of 3× 3 identical rotation matrices, and any translation vector 𝑑,

𝑉 (𝑢,𝑝) = 𝑉 ((𝑅− 𝐼)𝑋 + 𝑅𝑢 + 𝑑,𝑝).

2. Tendency to return to the rest shape. To implement this feature, the energy function
must have a global minimum of 𝑉 (𝑢,𝑝) = 0 at 𝑢 = 0 up to rigid transformations.

3. Stress increases with strain. This is not always true for heterogeneous materials with
internal buckling under load such as foams (polymer plus void). For our experiments
however, we assume the coarse elements do not undergo deformation large enough to
cause internal buckling.

4. Conservation of momentum. The elastic forces given by
𝐷𝑉

𝐷𝑢
must not alter the linear

and angular momentum of the element.

These seemingly intuitive requirements are difficult to satisfy for functions written in terms
of 𝑢. For example, here is a simple energy function

𝑉 (𝑢,𝑝) = ‖𝑢−𝑋‖2.

This function violates rules 1,3 and 4. To improve, one can define an energy function by
attaching an elastic spring between every pair of nodes. This energy function satisfies rules
1 and 4 but violates rule 2 and 3. To see this, let 𝑢 = −2𝑋 and check that the function has
the same value for an inverted element.

In order to ensure that our model meets the criteria for a valid energy function, we choose
our coarse material model for E 1 as a combination of the base material modelsℳ0

𝑘:

𝑉 1(𝑢1, 𝑝1) =
8∑︁

𝑘=1

𝑤𝑘 𝑉
0
𝑘 (𝑢0

𝑘, 𝑝
1
𝑘, 𝑋

1
𝑘), (2.6)
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Figure 2-3: The relationship between high-resolution and coarsened elements. At each
quadrature point 𝑋1

𝑘 , the coarse element copies the corresponding energy density function
𝑉 0
𝑘 from the high-resolution element.

where 𝑉 0
𝑘 is the strain energy density ofℳ0

𝑘 at quadrature point position 𝑋1
𝑘 (Figure 2-3).

Here 𝑢1 is the vector of nodal displacements associated with E 1 while 𝑢0
𝑘 are displacements

for the 𝑘𝑡ℎ element at level 0 reconstructed using trilinear interpolation from 𝑢1. The coarse
materials 𝑝1 = (𝑝1

1, ...,𝑝
1
𝑘) consists of the stacked material parameter vectors for each base

material inℳ0
𝑘, themselves denoted by 𝑝1

𝑘. 𝑤𝑘 is the standard Gaussian quadrature weight.
We observe that even if the individual base material models are isotropic, the coarse ele-
ment can become anisotropic by assigning different material parameters at the quadrature
points. We propose to improve the fitting by augmenting the coarse material model with an
anisotropic term. The complete model is then given by

𝑉 1(𝑢1, 𝑝1, 𝐶) =
8∑︁

𝑘=1

(︂
𝑤𝑘 𝑉

0
𝑘 (𝑢0, 𝑝1

𝑘, 𝑋
1
𝑘)

+ 𝐶𝑘

(︂√︁
𝑣𝑇𝐹 𝑇

𝑘 𝐹𝑘𝑣 − 1

)︂2)︂
,

(2.7)

where 𝑣 is a unit-length direction of anisotropy and 𝐶𝑘 is the scaling parameter at the 𝑘𝑡ℎ

quadrature point. The gradient of the anisotropic term is

𝑑(
√
𝑣𝑇𝐹 𝑇𝐹𝑣 − 1)2

𝑑F
= (1− 1

‖Fv‖
)Fvv𝑇 .

The second order gradient in the direction of a given 𝛿F is(︂
(1− 1

‖Fv‖
)I +

1

‖Fv‖3
𝐹𝑣𝑣𝑇𝐹 𝑇

)︂
𝛿F𝑇vv𝑇 .

2.3.2 Force Space Sampling

As mentioned previously, we take a sampling-based approach to coarse material fitting. In
order to fit our model (Equation 2.7) to 𝑉 0 we first draw a number of samples from the
deformation space of ℰ0 and compute 𝑉 0 for each sample. If a user has prior knowledge
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Figure 2-4: Example of forces used in our force-based sampling method. The forces here are
stretching, shearing, bending and twisting.

SIMULATE

Deformation

En
er

gy

Force Space

Figure 2-5: We sample the energy function of a 2×2×2 block of hexahedra by applying forces
and deforming the block using FEM. Each set of forces results in a deformation-energy tuple
which is used during fitting.

of the set of meshes and simulations that they will require, then the best way to draw the
samples is to run a number of anticipated simulations with various material combinations.
In this paper, we provide a more general method to draw samples for a material model.
Initially, we attempted sampling by applying a random deformation to the corners of E 1;
however, this led to many infeasible samples for very stiff materials. In order to alleviate
this problem we perform sampling in the force space.

For each element E 0 ∈ ℰ0 we apply a set of pre-defined forces including stretching,
shearing, bending, and twisting(Figure 2-4). Each force is sampled at 5 magnitudes in the
positive and negative directions. In addition to the above four kinds of forces, we added
a pinching force along each of the twelve cube edges. We solve an elastostatic problem to
compute the deformation of ℰ0, using constraints to remove rigid motion. Recall that this is
fast because 0ℰ consists of just 8 elements. Each sample is then a tuple {𝑢0, 𝑉 0} (Figure 2-5)
where 0𝑢 are the nodal displacements of ℰ0, and 𝑉 0 is the strain energy density value of this
deformed configuration.

2.3.3 Fitting

Given a set of deformation samples, {𝑢0, 𝑉 0}, we perform a non-negative least squares fit
to determine the parameters, 𝑝*, for material model(Figure 2-6):

𝑝* = argmin
𝑝1

𝑛𝑠∑︁
𝑠=1

(︀
𝑉 0
𝑠 − 𝑉 1

(︀
𝑟
(︀
𝑢0

𝑠

)︀
, 𝑝1

)︀)︀2
, (2.8)
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Figure 2-6: Coarse potential energy functions are fitted to the deformation-energy samples
using a least-squares optimization.

where 𝑟 constructs 𝑢1 from 𝑢0, 𝑛𝑠 is the total number of samples, and 𝑠 indexes all samples.
In our experiments we use the simplest form of 𝑟 choosing it to extract the displacements
of the corners of ℰ0. The material parameters are all constrained to be positive to improve
simulation stability. Since the material parameters have physical meanings such as Young’s
modulus and spring stiffness, the non-negativity constraint specifies that the coarse material
is made of traditional base materials.

Fitting in the Presence of Anisotropy If performed naively this optimization is non-
linear because we must simultaneously solve for 𝑣𝑘, the preferred direction of anisotropy.
This can severely slow the fitting procedure, especially in cases where it would otherwise be
a linear least squares problem (i.e if all fine-scale materials are Neo-Hookean or a similarly
simple material model). To avoid this problem we first estimate all anisotropy directions,
and then solve Equation 2.8 for the remaining material parameters. Our intuition is that
anisotropy manifests itself as preferential stretching along a particular axis. To find this axis,
we apply stretching forces to a block in a discrete set of directions uniformly sampled over
a sphere. If the stretching force is close to the direction of anisotropy, then the amount of
stretching deformation is reduced. For any given stretching direction v, we apply a stretch-
ing force and compute the deformation gradient F of each quadrature point. Under F, a
unit length vector in direction v is stretched to a new length 𝑙 = ‖Fv‖. The set of all 3D
vectors 𝑙v forms an ellipse-like shape. We find the principal axes of the ellipse (via SVD)
and use them as directions of anisotropy.

Regularization Since vastly different material assignments, 0ℳ𝑘, can produce the same
coarse material, our naïve cost function (Equation 2.8) can produce very large parameter
values and even non-physical negative ones. For example, consider a homogeneous material
assignment at the high-resolution level. The same coarse material can be achieved by in-
terleaving hard and soft materials at each fine element or by assigning a single, well chosen
material to all fine elements. To overcome this, we add a regularization term to control
the parameter ranges and prevent overfitting of the training samples. Our modified error
function takes the following form:

𝑛𝑠∑︁
𝑠=1

(︀
𝑉 0
𝑠 − 𝑉 1

(︀
𝑟
(︀
𝑢0

𝑠

)︀
, 𝑝1

)︀)︀2
+ 𝜆

∑︁
𝑘

(𝑝1
𝑘 − 𝑝0

𝑘)2, (2.9)
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Figure 2-7: Database compression step adds coarse materials to a compressed database by
a farthest point sampling strategy.

which prevents material parameters from deviating too far fromℳ0
𝑘. We chose the regular-

ization constant 𝜆 = 0.02 for the results in this paper. In our experiments, since the base
energy functions are linear with respect to the material parameters, the fitting problem can
be solved by linear regression with regularization.

2.3.4 Database Compression

Given 𝑛materials in the palette, the number of material combinations in a 2×2×2 block is 𝑛8.
In modern hardware, it is impossible to compute and store all material combinations even for
a moderately-sized palette with 100 materials. In order to compress the number of materials
stored in our coarse material database, we select a small number of representative material
combinations and remove all others. We compare materials in a feature space. In order to
construct coarse material feature vectors, we first select a common subset of deformations
from all computed deformation samples. We then evaluate the potential energies of each
coarse material at each deformation sample. The stacked vector of energies becomes a
coarse material feature vector.

Since our base materials differ in stiffness by orders of magnitude, we take the logarithm
to measure the difference in ratio. Let 𝐷 be the 𝐿2 norm of log-energies between the two
materials given by

𝐷(𝐴,𝐵) =

√︃∑︁
𝑠

(log(𝑉 𝐴
𝑠 )− log(𝑉 𝐵

𝑠 ))2, (2.10)

where 𝐴 and 𝐵 denote two distinct coarse materials in the database. Given the distance
metric, we can select 𝑘 representatives materials using farthest point sampling Eldar et al.
[1997]. We randomly choose an initial coarse material and then repeatedly select the material
combination furthest away from any previous representatives – continuing until we obtain
𝑘 representatives (Figure 2-7). This compression algorithm chooses 𝑘 samples that equally
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Figure 2-8: Hierarchical coarsening operates on one dimension at a time, performing clus-
tering at each intermediate stage (here denoted 𝑖𝑥). This allows our compression algorithm
to be applied aggressively, greatly reducing the number of energy samples we need for fitting
material parameters.

cover the coarse material energy space, helping to preserve good behavior in our coarse
simulations.

2.3.5 Hierarchical Coarsening

While one level of coarsening can yield significant speed-ups, DDFEM can also be applied
hierarchically. As discussed in subsection 2.3.4, the exponential growth of coarse material
palettes at each level makes it prohibitively expensive to perform fitting. We address this by
changing our coarsening strategy. Instead of choosing ℰ0 to be a 2×2×2 block we choose it
to be a 2×1×1 block, which we coarsen. We construct an intermediate database of materials
and compress. We then choose ℰ0 to be a 1×2×1 block, coarsen and compress, and finally a
1×1×2 block, coarsen and compress. Intermediate compression greatly reduces the number
of samples we need to generate in order to populate the material parameter database for
the next coarsening level. It is important to note that our intermediate databases only store
lookup tables which allow us to extract appropriate material IDs for the next coarsening
stage. Material parameters need only be stored in the final database since it is these elements
that are simulated.

2.4 Runtime Simulation

Once our coarse material database, 𝒫1, has been constructed we can use it to perform fast
online coarsening. Initially, the user loads geometry which is embedded in a hexahedral grid
for simulation. Prior to simulation we iterate over all 2×2×2 blocks of hexahedral elements
and perform mesh coarsening by replacing these 8 elements with a single coarse element.
We perform a database lookup into 𝒫1, using the material ID numbers of the 8 original
elements, to quickly retrieve the optimal coarse material for this coarse element. Database
lookup is fast (even using our unoptimized, single-threaded implementation), and this is what
makes DDFEM so appealing. We achieve significant simulation speed-up from coarsening,
retain accuracy in the simulation, and reduce the cost of material coarsening at runtime to a
negligible amount. Our material model can be used in any simulation algorithm suitable for
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non-linear elasticity. In our experiments, we use Coin-IpOpt Wächter and Biegler [2006] to
implement static and dynamics simulations with tolerance (“tol” option) set to 0.5. We use
Pardiso as our linear solver. For timing purposes, we limit Pardiso to single thread mode.
The pseudo-code for static simulation is shown in Algorithm 1.

Algorithm 1 Static Simulation
1: repeat

2: f : global force vector
3: 𝐿: triplet list for global stiffness matrix
4: for each element e do
5: compute elastic force f𝑒
6: add f𝑒 to f
7: end for

8: add external force f𝑒𝑥𝑡 to f
9: for each element e do
10: K𝑒: element stiffness matrix
11: for each quadrature point q do
12: compute stiffness matrix K𝑞 at quadrature point
13: K𝑒+ = K𝑞

14: end for

15: append entries of K𝑒 to 𝐿
16: end for

17: sort 𝐿 to get sparse stiffness matrix K
18: set entries in K and f for fixed vertices
19: ∆x = K−1f
20: compute step size ℎ using line-search
21: x+ = ℎ∆x
22: until convergence

2.5 Results and Discussion

All the results shown here are simulated using nonlinear constitutive models at the fine
scale. This and coarsening speed are the key differentiating factors between DDFEM and
other coarsening algorithms such as Nesme et al. [2009] and Kharevych et al. [2009]. Our
database starts with three Neo-hookean base materials with Young’s modulus 1𝑒5, 1𝑒6, 1𝑒7
and Poisson’s ration 0.45. For comparison with 3D-printed objects, we used two base mate-
rials with measured Young’s moduli. We use 500 force directions, and sample 5 magnitudes
in each direction, resulting in 2500 force samples for each material combination. In addition,
we generate 500 stretching samples for computing the direction of anisotropy. During fitting,
we use shear modulus and Lamé’s first parameter, as well as the spring stiffness. We repeat
the same process for the second level of coarsening, using 6561 materials in the first level as
base materials. We select 400 representatives at each intermediate level.
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Example grid size rel sp time/iter iters error
Pushing(0) 16×16×16 1.0 1.010 5 -
Pushing(1) 8×8×8 11.5 0.087 5 8.91e-4
Pushing(2) 4×4×4 31.4 0.032 5 1.36e-2
Bending(0) 8×32×8 1.0 0.270 28 -
Bending(1) 4×16×4 12.6 0.028 22 5.60e-2
Bending(2) 2×8×2 22.7 0.015 22 8.88e-2
Twisting(0) 8×32×8 1.0 0.300 16 -
Twisting(1) 4×16×4 15.2 0.031 10 1.56e-2
Twisting(2) 2×8×2 20.7 0.019 12 3.28e-2
Buckling(0) 128×8×16 1.0 8.85 32 -
Buckling(1) 64×4×8 50.1 0.28 20 7.24e-3
Buckling(2) 32×2×4 331.8 0.12 7 3.14e-2
Fibers(0) 32×100×32 1.0 193.85 17 -
Fibers(1) 16×50×16 51.2 4.95 13 2.94e-2
Fibers(2) 8×25×8 489.5 0.96 7 4.26e-2
Bridge(0) 56177 1.0 43.44 14 -
Bridge(1) 9727 8.4 4.88 15 4.39e-3
Bridge-arch(0) 65684 1.0 54.99 3 -
Bridge-arch(1) 11695 8.1 7.84 3 3.68e-4
George(0) 46152 1.0 52.19 23 -
George(1) 6755 16.4 3.49 21 2.86e-2
George-bone(0) 46152 1.0 41.35 12 -
George-bone(1) 6755 13.2 2.70 14 2.99e-2

Table 2.2: Relative performance, absolute performance in seconds and average vertex error
relative to the bounding box size for full-resolution and coarsened simulations. Relative
performance illustrates the performance increase gained by coarsening with respect to the
time taken for the high-resolution static simulation to converge. Bracketed numbers after
each example name indicate the number of coarsening levels with 0 indicating the high-
resolution simulation. All computation times are recorded using Coin-IpOpt running in
single threaded mode on a 2.5 GHz Intel Core i7 processor.

2.5.1 Database

One advantage of our compact coarse material representation is the small amount of storage
it requires. In fact we require only 6× 8 = 48 floating-point values for each material at the
first coarsening level and 6 × 64 = 384 values for the second level. (For each finer element,
0𝑝 contains 2 material moduli plus 𝐶,𝑣.) For further recursive levels, we can limit ourselves
to 320 values per material. Our current 3 material database is 4 megabytes in size.

2.5.2 Simulation Results

We show results from elastostatic simulations performed using DDFEM.We also demonstrate
its performance advantages over high-resolution simulations. We render wire frames to show
the discretizations of the high-resolution and coarse meshes. We first show examples of two
simple simulations, the pushing and twisting of a rectangular object with heterogeneous,
layered material distribution (Figure 2-9). Note that in all cases DDFEM qualitatively
matches the behavior of the high-resolution simulation. We also compare the performance
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Figure 2-9: Examples of pushing a cube (a - Initial State, c - Compressed) and twisting
a bar (b - Initial State, d - Compressed), both with heterogeneous material distribution.
We compare DDFEM to Naïve Coarsening and the ground-truth, High-Res Simulation. We
render wire frames to show the simulation meshes.

of DDFEM to a naïve coarsening method that uses the material properties from 2×2×2
element blocks of the high-resolution simulation mesh at each corresponding quadrature
point. In our supplemental video we compare to a second baseline model which averages
material parameters inside each coarse element. This average model is less accurate than
the Naïve model in all cases.

Naïve approaches often exhibit pathological stiffness for heterogeneous materials (illus-
trated by the lack of compression of the box and lack of twisting of the bar) Nesme et al.
[2009]. In these cases, DDFEM yields good speed ups while maintaining accuracy. For a
single level of coarsening we achieve 8 times or greater speed ups for all examples. Perfor-
mance numbers and mean errors are listed in Table 2.2. Since the fine simulation and the
coarse simulation have different numbers of vertices, we create a fine mesh from the coarse
simulation by trilinearly interpolating the fine vertices using the coarse displacements. The
errors are measured by computing the average vertex distance relative to the longest dimen-
sion of the bounding box in rest shape. We also examine the behavior of DDFEM during
bending (Figure 2-10). Yet again the naïve coarsening method completely fails to capture the
behavior of the high-resolution result, while DDFEM offers a much better approximation.
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1 Level of Coarsening 2 Levels of Coarsening
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Figure 2-10: Bending a heterogeneous bar: We compare DDFEM to Naïve Coarsening and
a High-Res Simulation. Subfigures (a, c) show comparison for 1 level of coarsening, and
(b, d) show 2 levels of coarsening. The naïve coarsening approach results in a much stiffer
behavior, whereas our fitted model more closely approximates the fine model.

Performance Analysis Table 2.3 shows time spent in quadrature evaluation versus in
solver at coarse and fine levels. We use 8 quadrature points for the first level of coarsening
and 64 for the second level. The time for computing the local stiffness matrix for one element
increases from 0.1ms to 1ms. In the second level, the speedup comes from the reduced number
of elements over which to perform quadrature and the time required for the linear solver.

To further investigate the performance of our coarsened simulations we replaced Pardiso
with an assembly-free Jacobi-preconditioned conjugate gradient (CG) linear solver and used
this to simulate our George-bone test case. While the overall runtime of the high-resolution
simulation increased from 496 to 2082 seconds (most likely do to the unoptimized nature
of our solver) our coarsened model achieved 20x and 67x speedups using one level and two
levels of coarsening respectively. One might expect no benefit from the second level of
coarsening since the number of quadrature points remains constant. However, the number
of CG iterations is roughly proportional to the number of vertices in the simulation mesh
and thus the coarse model converges more quickly (Figure 2-13). Since our coarse material
models are not restricted to use a fixed number of quadrature points, one could design
coarse models that are more tailored towards assembly-free solvers by reducing the number
of quadrature points and simplifying the strain energy expressions.

Complex material behavior DDFEM can capture the gross behavior of complex, spatially-
varying material distributions. Figure 2-11 shows the results of applying DDFEM to a non-
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Figure 2-11: Compressing a heterogeneous slab using Naïve Coarsening (1 level and 2 levels
of coarsening), DDFEM (1 level and 2 levels of coarsening) and a High-Res Simulation. The
top, darker layer is stiffer, causing the object to buckle. The bottom vertices are constrained
to stay on the floor. Figure (a,b) shows the slabs before compression, figure (c,d) shows the
slabs after compression and figure. Notice that, after 1 level of coarsening, Naïve Coarsening
neither compresses nor buckles as much as either DDFEM or High-Res Simulation. After 2
levels of coarsening, the buckling behavior is lost. The Naïve Coarsening fails to capture the
compressive behavior of High-Res Simulation, whereas DDFEM does.

linearly elastic slab with a stiff “skin.” The bottom of the slab is constrained to slide along
the ground with one end fixed. When force is applied to the free end of the slab, buckling
occurs. Somewhat obviously, DDFEM cannot replicate the frequency of the high-resolution
buckling pattern due to the coarseness of the simulation mesh. However, it correctly cap-
tures the gross behavior of the bar and approximates the overall amount of compression well.
Figure 2-11 also shows a comparison with 2nd level coarsening. In this case, the overall com-
pression of the bar is still captured accurately. For this example DDFEM affords 50 times (1
level of coarsening) and 332 times (2 levels of coarsening) performance improvements over
the high-resolution simulation. The artificial stiffness of the naïve model can be seen in the
reduced buckling and compression when compared to DDFEM at both coarsening levels.

Anisotropic material distribution Next we explore the ability of DDFEM to handle
highly anisotropic material distributions (Figure 2-12). Specifically, we embed a helical set
of stiff fibers in a soft, non-linearly elastic matrix. Pulling on the object induces a twisting.
Again, at one coarsening level DDFEM captures this anisotropic behavior well, much better
than the naive approach, and gains a 51 times speed up over the high-resolution simulation.
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Figure 2-12: Simulating a bar with an embedded set of fibers using Naïve Coarsening,
DDFEM and a High-Res Simulation. Note that DDFEM captures the characteristic twisting
motion of the bar better than Naïve Coarsening. (a,b) shows the initial state of both bars
while (c,d) shows the deformed state after pulling on the top of the bars.

0 1000 2000 3000
10−6

10−4

10−2

Number of Iterations

Sq
ua

re
d 

N
or

m
 o

f R
es

id
ua

l

High−Res Simulation
1 Level of Coarsening
2 Levels of Coarsening

Figure 2-13: Comparison of CG iterations on high-resolution and coarsened meshes of the
George-bone example. The squared residual is measured as ‖Kx− f‖2. We observe that CG
converges much faster on coarse meshes.
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Example grid size quad/iter
(12)

time/iter
(2-21)

iters

Bending(0) 8×32×8 0.11 0.27 28
Bending(1) 4×16×4 0.015 0.028 22
Bending(2) 2×8×2 0.014 0.015 22
Buckling(0) 128×8×16 1.0 8.8 32
Buckling(1) 64×4×8 0.11 0.28 20
Buckling(2) 32×2×4 0.10 0.12 7
Fibers(0) 32×100×32 10.0 193 17
Fibers(1) 16×50×16 1.0 4.9 13
Fibers(2) 8×25×8 0.68 0.96 7

Table 2.3: Portion of time in seconds used by quadrature computation during static simula-
tion in seconds. Bracketed numbers indicate corresponding lines in Algorithm 1.

Worth noting is that the DDFEM bar is slightly softer in the 𝑦-direction. This kind of
inaccuracy should be expected. Since our method builds a low-dimensional approximation
of a potential energy function we cannot hope to accurately reproduce the complete behavior
of the high-resolution simulation. What is important is that DDFEM captures the salient
global behavior, in this case, the twisting of the bar.

Geometry and material design We present three examples of using DDFEM for ge-
ometry and material design. In the first example, we edit the material composition of the
sole of a running shoe in order to stabilize it. Figure 2-14 shows the effect of the three
material edits as well as relative speed up achieved over the full resolution simulation and
coarsening time. DDFEM performance is always an order of magnitude more than that of
the high-resolution simulation, and, most importantly, our coarsening times are on the order
of milliseconds. We stress that our current implementation is completely single threaded and
that coarsening, which in our case involves a simple database lookup, is inherently parallel.
In the second example, we add a supporting arch to a bridge. Prior to the addition of the
support structure, the bridge sags catastrophically. The fast coarsening of DDFEM allows
us to achieve an 8 fold increase in simulation performance using a single coarsening pass. In
the third example, we add a rigid skeleton to a deformable character (George) in order to
control his pose. Here our single threaded, data-driven coarsening only takes 200ms.

Dynamics Though the examples shown in this paper focus on static analysis, DDFEM
is equally applicable to dynamic simulations. At its core, DDFEM simply supplies new,
more accurate material models for use during simulation. This makes the method useful
for accelerating various animation tasks as well. In the accompanying videos we show a
dynamic simulation of our fiber embedded bar, computed using a standard linearly-implicit
time integrator.

2.5.3 Fabricated Results

Finally, we test the accuracy of our simulation against fabricated results, created using a
Stratysys Object Connex 500 multimaterial 3D printer. We fabricated a bar with embedded
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Original Material Horizontal Fibers Vertical Fibers (Heel) Vertical Fibers (Toe)

72ms
Coarsening

73ms
Coarsening

72ms
Coarsening

12x 20x 34x 43x

Figure 2-14: Designing a shoe sole: We compare the performance of DDFEM to that of
High-Res Simulation in the context of a material design problems. Large images show the
effect of material changes on the sole of the shoe, which is being deformed under a “foot-like”
pressure field. Inset images show the materials assigned to the shoe sole and the embedded
finite element simulation mesh. Numbers within arrows show coarsening times between
editing steps and the numbers in the upper left corner of each image show the relative
performance of DDFEM to High-Res Simulation. While the DDFEM sole is made up of
many coarse material, we display it as a single color to distinguish it from the High-Res
Simulation.

8.4x 8.1x

Add Support 
and Coarsen

Figure 2-15: Accelerating geometry change: We repair a structurally unsound bridge by
adding a supporting arch (8x faster).

Figure 2-16: Correcting George’s posture using a rigid skeleton (High-Res Simulation and
DDFEM).
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Figure 2-17: A comparison of DDFEM (2 levels of coarsening) to real world deformations of
3D printed, multi-material designs. DDFEM captures the twisting behavior of an anisotropic
bar much more accurately than Naïve Coarsening. Similarly DDFEM accurately predicts
the deformation of our heterogeneous George character.

helical fibers as well as our George character and applied specified loads to both. We show
qualitative comparison of the deformed configurations of these real-world examples to our
simulated results (2 levels of coarsening-Figure 2-17). Note that the simulation does an
excellent job of predicting the deformed configuration of both objects.

2.6 Limitations and Future Work

Because DDFEM relies on a database compression step to combat the combinatorial explo-
sion of coarse materials, accuracy is heavily influenced by the set of representative coarse
materials. Finding a better way to select coarse structures is an interesting area of future
work. Second, in our attempt to make our method geometry independent, some accuracy
when dealing with partially filled boundary finite elements is sacrificed. Adding a parame-
terized boundary representation to the method, in order to more correctly handle non-axis
aligned boundary conditions, could also be explored. Third, the method acts on discrete
materials. While we believe that this is reasonable, considering the way that engineers and
designers approach material design, a method that coarsens continuous spaces of non-linear
materials could be beneficial.

Many avenues of future work are promising. First, one could explore topologically aware
meshing (i.e. in the same vein as Nesme et al. [2009]) to allow better handling of models with
large empty regions. In fact shape function learning approaches, such as Nesme et al. [2009]
could be combined with our material learning approach to produce even more accurate
simulations. Including these shape functions in our database could, for instance, allow
us to capture the wrinkles in our buckling example. Second, extending DDFEM to more
complex material models, such as those involving plasticity, would be a useful exercise.
Third, DDFEM can be combined with an adaptive voxel grid as well as other dynamic
meshing approaches to obtain further speed-ups. Finally, exploring hierarchical solvers based
on DDFEM coarsening is a very attractive direction. Solvers such as multigrid methods
rely on good coarse approximations to accelerate fine scale simulations. Using DDFEM for
these approximations could improve the convergence rate, and thus the performance of such
algorithms.
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Chapter 3

Computational Design with

Microstructures

Many engineering problems are formulated as high level objectives such as the ability to sup-
port certain weight, optimal tradeoffs between compliance and mass, minimal deformation
under temperature changes, etc. A popular approach to design such structures is topology
optimization. Topology optimization generally refers to discretizing the object of interest into
small elements and optimizing the material distribution over these elements such that the
functional goals are satisfied Bendsøe and Sigmund [2004]. Traditionally, topology optimiza-
tion focuses on designs made of homogeneous materials and is concerned with macroscopic
changes in the object geometry. With the advent of multi-material 3D printing techniques, it
is now possible to assign materials at a much higher resolution, allowing much finer designs
and improved functional performances. Unfortunately, standard techniques for topology op-
timization do not scale well and they cannot be run on objects with billions of voxels. This
is because the number of variables to optimize increases linearly with the number of cells
in the object. Since many current 3D printers have a resolution of 600DPI or more, a one
billion voxel design occupies only a 1.67 inch cube.

Most previous algorithms use a single material property variable such as density or mate-
rial stiffness in each cell, for which analytical formulas describing the property bounds exist
Allaire and Kohn [1993]. On the contrary, optimizing the structure and material distribution
of an object in a high dimensional material property space remains an open problem. In
this work, we propose a new computational framework for topology optimization with mi-
crostructures that supports design spaces of multiple dimensions. We start by computing the
gamut of the material properties of the microstructures by alternating stochastic sampling
and continuous optimization. This gives us a discrete representation of the set of achievable
material properties, from which we can construct a continuous gamut representation using
a level set. We then reformulate the topology optimization problem in the continuous space
of material properties and propose an efficient optimization scheme that finds the optimized
distributions of multiple material properties simultaneously inside the gamut. Finally, in
order to obtain fabricable designs, we map the optimal material properties back to discrete
microstructures from our database.

Our general formulation can be applied to a large variety of problems. We demonstrate
its efficacy by designing and optimizing objects in different material spaces using isotropic,
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cubic and orthotropic materials. We apply our algorithm to a diverse range of functional
objectives such as minimal compliance and target strain distribution. Furthermore, our
approach utilizes the high-resolution of current 3D printers by supporting designs with one
trillion voxels. We fabricate several of our designs to demonstrate practical applications
of our method in 3D printing. The main contributions of our work can be summarized as
follows:

∙ We present a fully automatic method for computing the space of material properties
achievable by microstructures made of a given set of base materials.

∙ We propose a generic and efficient topology optimization algorithm capable of handling
objects with a trillion voxels. The key of our approach is a reformulation of topology
optimization to work directly on continuous variables representing the material prop-
erties of microstructures. This allows us to greatly reduce the problem scale for it to
be efficiently solved with state of the art solvers.

∙ We validate our method on a set of test cases and demonstrate its versatility by applying
it to various design problems of practical interest.

3.1 Overview

Given as input a set of base materials, an object layout, and functional objectives, the goal
of our system is to compute the material distribution inside the object in order to optimize
these functional objectives. In our approach, we do not solve the problem directly, instead
we work with microstructures made of the base materials. The complete pipeline of our
system has three stages (Figure 3-1).

Material Space Precomputation In the first stage, we estimate the gamut of mate-
rial properties covered by all possible microstructures made by spatial arrangement of base
materials. Since exhaustively computing the properties of all these microstructures is, in
practice, intractable, we progressively increase the material space by alternating a stochas-
tic search and a continuous optimization. The first step introduces discrete changes in the
materials of the microstructures and allows emergence of new types of microstructures. The
second step allows to locally push the material space boundaries by refining the microstruc-
ture shapes. After completing this stage, we obtain a discrete representation of the space
of material properties and the mapping between these properties and the corresponding
microstructures.

Gamut-based Continuous Topology Optimization In the second stage, we construct
a smooth continuous gamut representation of the material property space by using a level
set field. We define our topology optimization problem directly in this space. Our approach
minimizes the objective function over possible material parameters while asking for strict
satisfaction of the physics constraints – typically, the static equilibrium – as well as the strict
satisfaction of the physical parameter bounds. Taking advantage of our gamut representation
as a level set, we formulate this last constraint as limiting the material properties to stay on
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Figure 3-1: Algorithm overview. We start by precomputing the gamut of material properties
that can be achieved with all material microstructures of a given size. Next, we run our
topology optimization algorithm that optimizes the material properties of the object within
this gamut such as to minimize some functional objective. Finally, we map the optimal
continuous material properties back to microstructures from our database to generate a
printable object.

the negative side of the level set. This guarantees that the material properties that we use
in the optimization are always physically realizable.

Fabrication-oriented Microstructure Mapping In the last stage, we generate a print-
able result by replacing each cell in the object layout with a microstructure whose material
properties are the closest to the continuous material assignment resulting from the optimiza-
tion. We also take into account the boundary similarity across adjacent cell interfaces to
improve the connectivity between microstructures. This results in a high-resolution, multi-
material model with optimized functional specifications.

3.2 Material Space Exploration

The first step in our pipeline is to determine the range of achievable physical properties when
combining the base materials into microstructures at a given resolution. Computing the me-
chanical properties of microstructures arranged in periodic tilings can be performed using
physics-based simulation. We use the homogenization theory to compute the elastic prop-
erties of each microstructure Allaire [2012], Panetta et al. [2015], Schumacher et al. [2015].
However, while inferring the homogenized properties of individual microstructures is not
particularly challenging, analyzing the space covered by all combinations of base materials
is much more difficult due to the combinatorial explosion in the number of possible material
arrangements. As an example, 16× 16× 16 lattices made of only two materials corresponds
to 24096 microstructures. Exhaustively simulating all microstructures is clearly infeasible in
practice. To address this issue, two possible avenues can be pursued:(i) sample the space
of microstructures, (ii) take advantage of the continuity between material parameters of the
individual voxels and macroscopic properties of the microstructures in order to generate new
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Figure 3-2: One cycle of computing the microstructure gamut. Given a set of samples, we
compute a signed distance function approximating the material gamut (left) and randomly
perturb microstructures lying near the boundary to provide new seeds to the continuous
algorithm (middle left). We then update the distance field and use the gradient of the
signed distance function at the the boundary to define new target material points (middle
right). These target material points are used in a continuous optimization that generates
new samples (right).

microstructures with desired properties. The second option is effective in reaching locally
optimal values in the material property space. However, the continuous function that maps
the material assignment to material properties is nonlinear. In particular, very different mi-
crostructures can correspond to the same point in the material property space. Additionally,
since the ratio of materials in each cell is bounded between zero and one, the continuous
optimization converges slowly or stops moving when material distributions in many cells are
at the lower or upper bound. Being able to jump out of a local optimum and discovering
different variants is important in order to provide new exploration regions. We combine the
strength of these two approaches in a scheme that alternates between a stochastic search
and a continuous optimization. We provide the technical details in the rest of this section.

3.2.1 Discrete Sampling of Microstructures

We aim at sampling the space of material assignments, i.e. microstructures, in a way that
maximizes the number of samples whose material properties lie in the vicinity of the ma-
terial gamut boundaries. We do not draw all samples at once but progressively enrich the
database of microstructures as we refine our estimation of the material gamut boundaries.
This sampling strategy is motivated by the observation that a small change in the material
assignment of a microstructure generally – but not always – translates to a small change of
its material properties. By modifying microstructures located near the current boundaries
of the material property gamut, we are likely to generate more structures in this area, some
of which will lie outside of the current gamut.

Given a population of microstructures to evolve, we generate new samples from each mi-
crostructure by changing adding or subtracting random beams. To rationalize computational
resources, we want to avoid revisiting the same voxel twice. But we do not want to privilege
any particular order either. Ritchie et al. [2015] recently presented a Stochastically-Ordered
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Sequential Monte Carlo (SOSMC) method that provides a suitable approach. In SOSMC,
a population of particles (microstructures) corresponding to instances of a procedural pro-
gram (the assignment of materials to the voxels of the microstructures) are evolved so as to
represent a desired distribution. During this process, the programs are executed in a random
order and particles are regularly scored and reallocated in regions of high probability. In our
particular settings, we use the scoring function

𝑠(pi) =
Φ(pi)

𝐷(pi)
× 1

𝐷(pi)
, (3.1)

where Φ(pi) is the signed distance of the material properties of particle 𝑖 to the gamut
boundary (see Section 3.2.3) and 𝐷(pi) is the local sampling density at the location pi. We
define the sample density as

𝐷(pi) =
∑︁
k

𝜑k(pi) , (3.2)

where 𝜑𝑘(p) =
(︁
1− ||p−pk||22

h2

)︁4

are locally-supported kernel functions that vanish beyond
their support radius ℎ, set to a tenth of the size of the lattice used for the continuous
representation of the material gamut (see Section 3.2.3).

The first term in Equation 3.1 favors microstructures located near the gamut boundary.
The normalization by 𝐷 allows us to be less sensitive to the local microstructures density and
to hit any location corresponding to the same level-set value with a more uniform probability.
The second product is used to additionally privilege under-sampled areas.

Particles are resampled using systematic resampling scheme [Douc, 2005] that is also
used to initiate the population of particles. These particles are then evolved by adding and
subtracting beams with random sizes. The sampled structures are then cleaned by removing
unsupported components and filling enclosed cavities.

3.2.2 Continuous Optimization of Microstructures

The goal of the continuous optimization is to refine the geometry of the microstructures
located at the boundary of the gamut in order to further expand the gamut along the normal
directions (Figure 3-3). We start continuous sampling by selecting a subset of microstructures
lying on the boundary of the gamut. The discrete structures are mapped to continuous values
close to 0.5. We used 0.5±0.3 in our experiments. Doing so allows the topology optimization
algorithms to move freely in the first steps and discover new structures. We show an example
of reducing the Poisson’s ratio of an initial structure in Figure 3-3. In the plot, the initial
Poisson’s ratio is close to 0.4 since the starting point is similar to a homogeneous block.

For each starting structure, we identify target material parameters using the gradient
of the level set Φ at the initial discrete sample point p (see Section 3.2.3) defined by q =
p + ∇Φ(p). We translate this target material parameters into an elasticity tensor C0 and
density 𝜌0. Here 𝜌 is the ratio of the two base materials in the microstructure.

Note that our problem formulation does not restrict us to a particular topology opti-
mization algorithm or material distribution parametrization. We have experimented with
two objective functions that worked equally well for our purposes. The first objective uses an
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Figure 3-3: The continuous sampling step uses topology optimization to expand the gamuts
by refining existing structures. A good starting point is necessary for the optimization to find
better solutions. We use discrete microstructures near the boundary to initialize topology
optimization. At convergence, we threshold the values to obtain a new discrete sample.

energy based formulation Xia and Breitkopf [2015a] to compute and optimize the elasticity
tensor directly. At a high level, the optimization problem is

arg min
x

𝑓(x) = (C(x)−C0)
2 + 𝑤𝜌(𝜌− 𝜌0)

2, 𝜌 =
∑︁
𝑖

𝑥𝑖, (3.3)

where x is the ratio of materials in each cell, and 𝑤𝜌 controls the weighting between the
displacement term and the density term. Xia and BreitKopf developed parameter heuristics
to optimize for difficult cases such as negative Poisson’s ratio structures. We naturally arrive
at structures with negative Poisson’s ratio without the parameter varying step in Xia and
Breitkopf [2015a] since our sampling strategy allows us to explore a wide variety of initial
designs.

The second objective is formulated using harmonic displacements [Kharevych et al., 2009,
Schumacher et al., 2015] G instead of the elasticity tensor directly. G is a 6× 6 symmetric
matrix where each row corresponds to a strain in vector form. We use the target elastic-
ity tensor C0 to compute the target harmonic displacements matrix G0 and minimize the
objective function:

𝑓(x) = (G(x)−G0)
2 + 𝑤𝜌(𝜌− 𝜌0)

2. (3.4)

This objective matches soft structures more accurately since entries of 𝐺 are inversely pro-
portional to material stiffness.

Following the work by Andreassen et al. [2014], we use the method of moving asymptotes
(MMA) Svanberg [1987]) to optimize the objectives using an implementation provided in the
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NLOPT package [Johnson, 2014]. We run at most 50 iterations since it usually converges to
a solution within 20-30 steps (Figure 3-3). MMA makes large jumps during the optimization
while keeping track of the current best solution, thus causing the oscillation of the objective
value. To force continuous material ratios towards discrete values, we experimented with
the SIMP model with the exponent set to 3 and the Hashin-Shtrikman bound for isotropic
materials described by Bendsøe and Sigmund [1999].

Either interpolation allows us to threshold the final continuous distribution and obtain
a similar discrete sample. We tolerate small deviations introduced by the thresholding since
our goal is to obtain a microstructure lying outside of the gamut rather than reaching a
particular target. In practice, we observed that the material properties of the final discrete
structures often did not change significantly after the thresholding step.

3.2.3 Continuous Representation of the Material Gamut

We represent the gamut of material properties using a signed distance field that is computed
from the material points associated to the sampled microstructures. First, we normalize each
coordinate 𝑝𝑖 of p to constrain the scope of the level set to an 𝑛-dimensional unit cube. Then
we compute the level set values on the cell centers of an 𝑛-dimensional Cartesian grid that
encloses this unit cube. We draw inspiration from the methods for surface reconstruction
used in particle fluid rendering Ando et al. [2013], Bhatacharya et al. [2011], Zhu and Bridson
[2005] and extend it to 𝑛 dimensions. In this case, a signed distance field is generated from
a set of points by evaluating an implicit distance function Φ at each point p ∈ ℳ. We
initialize the signed distance field using the implicit function Φ(p) = ||p− p̄|| − 𝑟 from Zhu
and Bridson [2005] where || · || is the Euclidean distance between two points inℳ, and p̄ is
the average position of the neighboring points of p within a range of 2𝑟. Note that the signed
distance is initially defined only near the boundary of the gamut. In order to sample the
distance on the entire domain, we propagate the 0-level set surface using the fast marching
algorithm and solve an explicit mean curvature flow problem defined as 𝜕Φ/𝜕𝑡 = ∆Φ [Osher
and Fedkiw, 2006]. Having a continuous representation of the gamut of materials achievable
by the microstructures, we can now reformulate the topology optimization problem directly
in the material space.
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3.3 Discovery of Extremal Microstructure Families

Microstructures can exhibit remarkable physical properties that extend beyond the prop-
erties of their constituent materials. Many microstructure types have been developed to
demonstrate applications in mechanics [Kadic et al., 2012, Li and Gao, 2016, Meza et al.,
2014, Milton and Cherkaev, 1995, Wang et al., 2016, Zheng et al., 2014], acoustics [Fang
et al., 2006, Li et al., 2009], and electromagnetics [Schurig et al., 2006, Shalaev, 2007]. These
microstructures are typically designed by domain experts using time and labor intensive
manual processes. These designs are often programmable in the sense that they have a small
number of parameters to generate a family of geometries. A given microstructure family can
be tested by performing simulations or experimental measurements on a set of samples drawn
from it. The mapping between parameters and physical properties discovered in this testing
process helps uncover the underlying design principles that drive these correspondences. In
practical applications, mapping the parameter space also allows for the selection of a family
member that has a desired tradeoff of physical properties [Gibson and Ashby, 1982]. Unfortu-
nately, it is rare for manually designed microstructure families to reach extremal properties.
This is because the space of possible microstructure designs is combinatorial and therefore
impossible to explore exhaustively. One common approach to bypass this design challenge
is to use computational methods, such as topology optimization [Sigmund, 1994, Vogiatzis
et al., 2017], with a computer simulation in their inner loop to find a microstructure with a
desired tradeoff of physical properties. Unfortunately, constructing parametric models from
these optimized structures has heretofore required further expertise and manual design ef-
fort [Clausen et al., 2015]. In contrast to previous work, we present the first computational
method to automatically explore the space of microstructure designs and discover parametric
families optimized for competing properties.

While our methodology is not limited to specific physical properties, this study applied
our method to design of mechanical microstructures. Specifically, we set our algorithm to
search for a particularly interesting type of mechanical microstructures: auxetic materials,
which have a negative Poisson’s ratio. These materials have the unusual property of becom-
ing laterally thinner under axial compression. 2D auxetic structures are well understood due
to their relatively simple geometry such as reentrant structures [Lakes, 1987, Sigmund, 1994],
chiral structures [Ha et al., 2016, Prall and Lakes, 1997] and rotating mechanisms [Babaee
et al., 2013, Bückmann et al., 2014]. Generalizing existing 2D structures to 3D is challenging
since a naive arrangement of 2D mechanisms often results in orthotropic or other anisotropic
structures with low shear resistance. Such structures will prefer shearing deformation when
the load is not aligned well with the auxetic direction. Additionally, since Poisson’s ratio for
orthotropic structures is unbounded, orthotropic auxetic structures are much easier to find
than isotropic ones18. Lakes fabricated and tested the first isotropic 3D auxetic structure13.
However, designing manufacturable 3D auxetic structures remains a challenging task due
to its complexity. Only a handful of 3D design patterns have been fabricated and mea-
sured [Andreassen et al., 2014, Saxena et al., 2016]. This study led to the discovery of five
families with negative Poisson’s ratio and tunable shear resistance.
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Figure 3-4: A computational process for discovery of extremal microstructure families. Given
a set of physical properties and design constraints, we estimate the material property gamut
using stochastic sampling and topology optimization. Structures near the gamut boundary
are grouped into families using nonlinear dimensionality reduction. A representative from
each family is fitted with a template represented as a skeleton. Beams are placed on the
skeleton edges with optimized parameters to fit the original structure. Structure variations
with the same topology can be generated by varying the beam parameters. Finally, reduced
template parameters are computed to reveal domain-specific design principles.

3.3.1 Discovery Pipeline

Our discovery pipeline has four steps (Figure 3-4). The first step estimates the material
property gamut, which is the range of material properties achievable by the microstructures.
Here a microstructure is defined on a 3D regular grid composed of hexahedral voxels. The
design space includes all possible material assignments to the voxels. Since exhaustively
simulating all possible microstructures is impractical, this step computes a set of sample mi-
crostructures using methods outlined in Section 3.2. The topology optimization stage pushes
structures past the explored gamut boundary along gradient directions. The stochastic stage
introduces discrete changes to escape local optima.

In the second step, common geometric traits are identified among microstructures near
the gamut boundary. Geometrically similar structures are grouped into families using non-
linear dimensionality reduction (NLDR). Isomap [Tenenbaum et al., 2000] is used as the
reduction method because it can discover long sequences of related structures while keeping
distant points separated. The effectiveness of NLDR depends on the distance metric that
measures geometric difference. A smoothed Euclidean norm is chosen for robustness (Supple-
mentary Fig. 1). NLDR outputs an embedding of the microstructures in a low-dimensional
space where similar structures are closely packed. Microstructures in the embedding space
are clustered using a Gaussian mixture model [McLachlan and Krishnan, 2007] where each
cluster corresponds to a family. Families with a significant number (> 200) of members are
extracted for further analysis.

The third step in our process constructs templates for each microstructure family (Fig-
ure 3-5). We observe that most of the extremal structures are composed from beams, plates
and blocks. All of these structures can be represented as cuboids with different edge lengths.
We therefore chose cuboids as the building blocks for microstructure templates. To find
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Figure 3-5: Steps for computing a microstructure template from a representative structure.
For an input structure (a), we only need to analyze one tetrahedral slice (highlighted in red)
of the whole structure due to its cubic symmetric construction. A morphological skeleton is
extracted from the portion of the structure (b). The skeleton is a sequence of voxels. They
are converted into a graph by connecting neighboring voxels. The graph is simplified (c) by
merging paths into single edges while maintaining an error threshold. A cuboid (d) is placed
on each edge of the simplified graph. (e) The final structure generated by the template using
fitted parameters.

a template from a family representative, its topology is computed using a morphological
skeleton [Lee et al., 1994]. The morphological skeleton is a subset of voxels in a 3D binary
material structure that represents the branching and topology of the structure. From the
skeleton, we construct a graph by connecting neighboring voxels. The graph is then simpli-
fied by collapsing paths into single edges. A path is a sequence of connected vertices where
all intermediate vertices have a degree of 2. We then iteratively add back the furthest ver-
tices to the simplified path until no vertex in the original path deviates away by more than a
threshold of 0.02. The simplified graph is converted to a template by placing cuboid beams
on each edge. To smooth the connections between the beams, we place dome-shaped caps at
the endpoints of each beam. The cross-section sizing and orientation of each cuboid are ini-
tialized individually to minimize the Euclidean norm between the cuboid and the smoothed
input structure. We then run gradient descent with central differencing to adjust all cuboid
parameters including cuboid endpoint positions to arrive at a final fitted structure

The final step of our software pipeline computes reduced parameters to facilitate intuitive
navigation in the material property space. Since the templates from the previous step contain
tens of parameters that do not directly correspond to material properties, it is still difficult
to understand the key design principles. The reduced parameters allow for direct tuning
of each material property. For a given parametric template, its parameters are fitted to all
structures of the corresponding family. To avoid outliers, microstructures leading to large
fitting errors (> 5% voxel difference) are excluded. Principal component regression (PCR)
is then performed on the set of fitted template parameters to find principal directions in the
template parameters space. Varying the parameters in a direction corresponds to moving
on the gamut boundary in a certain direction. A reduced parameter is assigned to each
direction to control amount of change along that direction.
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Figure 3-6: Structures with large Poisson’s ratios (𝜈 > 0.3). The embedding is computed
using Isomap with 3 dimensions while the plot shows the 2D projection of the embedding.
Structures with a positive Poisson’s ratio have relatively simple topologies. Most structures
are controlled by a single beam reflected according to cubic symmetry.

3.3.2 Results and Discussion

The results of this study focus on elastic material properties: Young’s modulus, Poisson’s
ratio and shear modulus. The elastic material property gamut is estimated from 15,000 3D
cubic-symmetric microstructures at a voxel resolution of 643. The structures and material
parameters are available online [Chen, 2017]. The voxel resolution is a power of 2 because
that is necessary to achieve optimal performance of our multigrid FEM simulation. The
specific resolution 643 is chosen because it is sufficient for discovering auxetic structures
with a wide range of relative shear modulus while 323 structures cannot achieve comparable
complexity or property ranges. The macroscopic elastic parameter of each microstructure
is computed using homogenization theory [Guedes and Kikuchi, 1990, Xia and Breitkopf,
2015a] assuming a periodic boundary condition. Each microstructure consists of a per-voxel
binary material assignment. Due to manufacturing limits on minimum feature size, sensitiv-
ity filter [Sigmund, 2007] is applied in gamut sampling step to avoid structures with overly
thin features. Here we focus on analysis of auxetic structures since families with positive
Poisson’s ratios are relatively simple (Figure 3-6). Five families with significant number of
members (Figure 3-7) are discovered using three Isomap embedding dimensions. We con-
firmed that Isomap associates seemingly distant structures through intermediate structures.
For example, structure 5-1 and 5-3 from family 5 have very different beam thicknesses re-
sulting in large geometric distance. However, the embedding reveals that there is a sequence
of structures such as 5-2 that make the connection between them.

Three structures with different material properties from each family are printed to verify
simulation accuracy. All structures are printed using an EOS SLS printer with elastic mate-
rial PEBA2301. The printer required a minimum feature size of 0.9𝑚𝑚 for wire diameters
and 0.8𝑚𝑚 for wall thicknesses. To satisfy the printing constraints, each cell is scaled to a
side length of 2.54𝑚𝑚. Simpler structures from Template 1-3 are printed using a 2x2x2 grid
arrangement while more complex families are printed using a 3x3x1 arrangement to allow
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Figure 3-7: Five microstructure families identified by nonlinear dimensionality reduction
(NLDR). Structures with similar properties in the gamut (a) are selected to study their
commonalities. We focused on structures with negative Poisson’s ratio (auxetics) since they
exhibit more complex structures. Auxetic families are identified in the embedding space
numbered from 1 to 5 (b). Families with similar topologies are located closer in the embed-
ding space. Three example structures from family 5 show underlying connection between
seemingly distinct structures through gradual morphing of shape.

support material to escape. The base printing material is measured using an Instron 5944
with tensile tests instead of compression tests since a solid block of base material is too stiff
for our equipment. The PoissonâĂŹs ratio is measured using a video camera fixed on the test
machine (Figure 3-8). Even though all samples are printed using the same printer and the
same materials, the YoungâĂŹs modulus of the prints is highly variable. More specifically,
the stiffest sample has a YoungâĂŹs modulus which is twice as high as the one of the softest
samples. On the other hand, the PoissonâĂŹs ratio of the base print material is measured
to be 0.34 and has a much lower variance of 0.02 in the sample set. The 3D structures are
measured using a compression test at a speed of 2𝑚𝑚/𝑚𝑖𝑛 with 6𝑚𝑚 maximum strain.
The compression plates are lubricated with oil to reduce friction. Significant variance in
PoissonâĂŹs ratio is observed due to several factors in manufacturing and measurement. An
additional challenge is that the printer does not reliably reproduce the geometry specified
by input files. In practice, the printed models are thickened by 0.1− 0.4𝑚𝑚, which is signif-
icant compared to the thinnest feature size in our microstructures. This stiffens the joints
and reduces PoissonâĂŹs ratios. The effect is exacerbated by incomplete support removal.
The support material is the same as the print material in powder form, which sticks to the
print easily especially around hard-to-reach internal corners. We believe that the discrep-
ancy can be reduced in the future by using more precise printing technologies with soluble
support material. For each of the five families, a parametric template is automatically
constructed. The initial topology of a template is extracted from the morphological skeleton
of a representative structure (Figure 3-9b). While the topologies are visually complex, they
are generated by mirroring a small number of beams (highlighted in red) reflected according
to cubic symmetry (Supplementary Table 2). The most complex template 5 contains only
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Figure 3-8: Test apparatus (a) for measuring YoungâĂŹs modulus and PoissonâĂŹs ratio
using tensile (b) and compression (c) tests. The PoissonâĂŹs ratio is calculated using vertical
displacements and horizontal displacements. The vertical displacement is read from both the
tensile test machine and the camera for redundancy. The horizontal displacement is measured
using the camera only.

Figure 3-9: Sampled coverage of microstructure templates in the gamut. (a) Extracting a
skeleton (middle) from a representative structure (top). The skeleton represents the topology
of the structure. A beam network is derived from the skeleton by placing a cuboid on each
edge of the skeleton. Since we enforce cubic symmetry, the beams in a single tetrahedron
determine the entire beam network. A template can generate a new structure (bottom) that
approximates the original structure. (b) Coverage of each template in the material property
space. (c) Reducing template parameter dimensions with principal component regression.
The first two reduced parameters approximately correspond to varying the Young’s modulus
and Poisson’s ratio of a structure.
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Figure 3-10: Microstructures that resemble designs from previous works. (a) A reentrant
structure in our database similar to the conceptual sketch (b) proposed by Lakes [1987].
Both structures have very low shear modulus ratio (0.05-0.15). Our structure is simpler with
only two control beams reflected by cubic symmetry while (b) has three beams (highlighted
in red). (c) The rotating triangle mechanisms resembles 2D chiral structures [Prall and
Lakes, 1997]. (d) An anti-trichiral lattice [Alderson et al., 2010] has unit nodes most similar
to our rotating triangle joints (highlighted in red).

6 control beams. The five families cover similar ranges of Young’s modulus and Poisson’s
ratio. However, they span different ranges of shear modulus. Inspired by classical linear
elasticity theory, we compare the shear modulus ratio defined as

𝐺′ =
2𝐺(1 + 𝜈)

𝐸
,

where 𝐺 is shear modulus, 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. For traditional
isotropic materials, the theoretical ratio is one. A low ratio indicates low resistance to
shear deformation. For auxetic materials, lower ratios are much easier to obtain than higher
ones. Even with foam structures assumed to be isotropic, experimental data from previous
work indicates that the ratio is less than one [Roh et al., 2013]. Template 1 resembles
the conceptual sketch by Lakes [1987] and belongs to the reentrant class of geometry. The
difference is that our template has only two beams mirrored by cubic symmetry while Lakes’
sketch contains three (Figure 3-10). It is the simplest auxetic template that we identified, as
our microstructure database does not contain any single-beam auxetic structure. The shear
modulus ratio of this family falls in the range between 0.07 and 0.24, which is the lowest
among all five families. Templates 2 and 3 are similar to each other and differ by a diagonal
beam in the face center (highlighted in green in template 3). Since their geometric difference
is small, they are adjacent in the Isomap embedding space. The central beam is responsible
for increasing the shear modulus of the structures. For structures with 𝜈 around -0.5, the
additional beam increases the maximum shear modulus ratio from 0.34 to 0.90. Templates
4 and 5 also differ by a single beam. Even the most complex template 5 is optimized from
a simple cube frame through our continuous optimization step. The additional beam in
template 5 makes the family stiffer overall compared to Template 4. Both families can
achieve shear modulus ratio greater 1 for 𝜈 < −0.5.

For each family, principal directions of template parameters are extracted using PCR. The
templates and reduced parameters are included with the report. Two significant directions
correspond to change in Young’s modulus and shear modulus are kept for tuning structures.
These directions reveal that for families 2 and 3, the thickness of the slanted column (Figure 3-
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Figure 3-11: Reduced parameters for Family 4. The distribution of the parameters corre-
sponding to Family 4 is shown as red points in (a). The two principal directions are shown
as green arrows in (b). The first direction reduces the Young’s modulus and Poisson’s ratio
by decreasing the joint thickness (c). The second direction increases the shear modulus by
slightly rotating the triangle joints outward (d).

12a highlighted in red) is crucial for Poisson’s ratio where the Poisson’s ratio increases
quickly with increasing beam thickness. For families 4 and 5, the thickness of the rotating
triangle affects the tradeoff between Young’s modulus and shear modulus (Figure 3-11).
While our cuboid-based templates are very simple, they are sufficient for replicating the
auxetic behavior of the corresponding families. We validated the auxetic properties of the
fitted microstructures using simulation. New structures are generated by varying template
parameters. 300 new structures are sampled from each family along two PCR coordinate
directions. The coverage of the templates in the microstructure gamut (Figure 3-9b) shows
that the templates can generate microstructures on the gamut boundary.

So far all of our simulations are carried out assuming linear elasticity, which is only
accurate for infinitesimal deformations. We also make the common assumption that there is
no self-collision. This assumption also imposes a limit on the maximum compressive strain
we can apply to our structures before self-collision occurs. Representative structures from
Families 4 and 5 have the lowest limit at 7% compressive strain. In practice, non-linear
deformations such as bending and rotation are prevalent in our auxetic structures. Such
deformations can cause linear elasticity to incorrectly predict significant volume expansion
of rotated parts (up to 20% percent in our test cases). Thus, we tested our structures using
a nonlinear material model to understand their behavior under large deformations. We
simulated nonlinear deformation behavior using Neo-Hookean material model. At maximum
allowed strain of 7%, linear elasticity and Neo-Hookean model still has acceptable agreement
with an average error of 16% in computed Poisson’s ratio. In addition to simulation, we
also printed three example structures from each family with varying Young’s modulus and
material ratio. Our structures demonstrated consistent auxetic behavior (Supplementary
Video 3) even though they are optimized with linear elasticity assumption. Our structures
do not rely on structural instability [Bertoldi et al., 2010] for auxetic behavior and shrinks
uniformly as load increases. This means that their deformations consistently follow the same
pattern for different trials.

Our process automatically discovered two types of auxetic mechanisms: slanted columns
and rotating triangles (Figure 3-12). The slanted column mechanism transforms vertical
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Figure 3-12: Discovered auxetic mechanisms. Two mechanisms capable of producing auxetic
behavior are discovered from our microstructure families. The slanted column (a) transforms
vertical stress into horizontal displacement. The rotating triangle mechanism (b) pulls the
outer tip of the joint towards the center of the structure, reducing the macroscopic volume.
(c) The relationship between vertical strain and rotation of the triangle joint. The rotation
is observed in printed samples under vertical load (d). Stress is concentrated at the lower
end of the triangle joint (e).

compression to horizontal motions. The rotating triangles transform vertical compression
into a winding deformation that pulls the right end of the mechanism towards the center
of the microstructure. Their motions are shown in supplementary video S3. While rotat-
ing triangles bear resemblance to existing 2D structures [Alderson et al., 2010] known as
chiral structures (Supplementary Fig. 6d), its extension to 3D cubic structure with large
shear modulus has never before been constructed. Additionally, the entire mechanism is
discovered entirely automatically without imposing any artificial design restrictions—all mi-
crostructures are built from voxels. To inspire future applications of these mechanisms, we
report the loading behavior of the mechanisms. These auxetic mechanisms are the most ac-
tive parts in the microstructures. They act like joints that connect the more rigid scaffolding
in microstructures. Because of this, they undergo the most deformation and concentrate a
large amount of stress. For the rotating triangles, the stress is concentrated on the connec-
tions around the triangle. We computed the maximum principal strain in the structure with
respect to the vertical compressive loading to provide insights into the strength of the block.
At the maximal compressive loading (7%), the maximum principal strain in the structure is
7%. Calculation using a reported Young’s modulus of 80𝑀𝑃𝑎 yields a von Mises stress of
6.72𝑀𝑃𝑎 (Fig. 4e) while our print material has a reported strength of 8.5𝑀𝑃𝑎. The printed
structures are approaching the strength limit under the load. Since the available material
is relatively weak even compared to common materials such as ABS plastics and rubber,
we believe that structural strength can be improved significantly with future manufacturing
materials.

We have shown a computational method that combines discrete sampling, continuous op-
timization and dimensionality reduction methods for automatic discovery of new microstruc-
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ture families and mechanisms that would have been challenging to design manually. The
discovered structures are suitable for manufacturing as they avoid thin features and distribute
deformation over beams instead. They also span a wide range of shear moduli, allowing en-
gineers to balance between different macroscopic properties. While our case study focuses on
elastic material properties, the technique may be applied to other physical properties when-
ever predictive simulation exists. Our computational pipeline paves the way to discovery of
structures that balance mechanical, thermal, optical, acoustic and electromagnetic proper-
ties. Moreover, it advances the understanding of underlying mechanisms that are crucial to
extremal properties.

3.4 Topology Optimization

A classic topology optimization problem consists of optimizing the shape and structure of
a given object defined by a prescribed domain in order to minimize a given cost function.
For example, topology optimization can minimize the compliance of the object while satis-
fying the static equilibrium and the total weight constraint. Since the shape of the object
is unknown a priori, only a design domain is specified as input. The design layout is vox-
elized and a density variable is assigned to every cell of the discretized domain. A high
density corresponds to assigning material to a cell while a low density value implies a cell
should be empty. By penalizing intermediate values for these densities, a binary distribution
corresponding to the object’s final shape and material can be eventually obtained.

In this work, we extend the traditional topology optimization algorithm in multiple ways.
First, we do not compute a binary material distribution at the cell level as commonly done.
Instead, we leverage our database of microstructures and ask for each cell to be filled with
one of the microstructures. This is done by working with the macro-scale material properties
of the microstructures instead of their geometry directly. The second difference is that our
algorithm can be used with parametrizations of the material property space that are more
complex than the single density parameter per cell that is commonly used in topology opti-
mization algorithms. In our generalized formulation, each cell 𝑐𝑖 contains an n-dimensional
material parameter p𝑖 ∈ ℛ𝑛. We use p to denote the stacked vector of material parameters
in all cells. Given a signed distance function Φ(p𝑖) that defines the gamut, our new topology
optimization problem is then written as

min
p

: 𝒮(p,u)

𝑠.𝑡. : ℱ(p,u) = 0

: Φ(p𝑖) ≤ 0, 1 ≤ 𝑖 ≤ 𝑁𝑐

(3.5)

where 𝒮 is a real-valued objective function that depends on the material parameters and
the displacement vector u. u is an auxiliary vector for expressing elasticity equilibrium
constraint and other displacement objectives. The equality constraint ℱ = 0 requires u to
satisfy the elasticity equilibrium and the inequality constraint Φ ≤ 0 guarantees that the
material properties of each cell stay inside the precomputed gamut. The static equilibrium
constraint is written as

ℱ(p,u) = 𝐾(p)u− fext = 0, (3.6)
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where fext are the external loads applied to the object and 𝐾(p) is the stiffness matrix
determined by the material parameters.

The gamut constraint for a point p𝑖 in the material property space is described by an
𝑛-dimensional level set function Φ(p). We have Φ(p𝑖) < 0 for a point inside the gamut,
Φ(p𝑖) > 0 for a point outside the gamut, and Φ(p𝑖) = 0 for a point on the boundary of
the gamut. The value of Φ represents the 𝑛-dimension Euclidean distance to the level set
boundary. The gradient of Φ are evaluated by a finite difference operation on the signed
distance field.

In our examples, the material parameter p consists of the ratio 𝜌 of the rigid material
and the elasticity parameters e. The objective function contains two types of terms: an
elasticity term 𝒞(e,u) that controls the deformation behavior (see Section 3.4.1) and an
optional density term 𝒱(𝜌) that controls the overall mass of the object. The density term is

𝒱(𝜌) = (
𝑁𝑐∑︁
𝑖=1

𝜌𝑖𝑉𝑖 − �̂�)2, (3.7)

where 𝑉𝑖 is the cell volume and �̂� is the target overall mass. When one of the base material is
void, the use of the density term allows to modify the topology of the object at a larger scale
than the one of the microstructures, and thus to change the external shape of the object. In
fact, even for multi-material designs involving base materials with similar mass densities, we
noted that we could use the density term to encourage the presence of soft material in the
structure. By removing the external cells entirely made of the soft material, we could then
decrease the mass of the structure without significantly changing its mechanical behaviour.
Alternatively, the density term can also be used to control other quantities related to the
ratios of the different materials such as the cost of the object. For specific problems, we can
also add spatially-varying weight control terms to Equation 3.7. For example, we can control
the target weight of each individual cell by adding a local term (𝜌𝑖 − 𝜌𝑖)

2𝑉𝑖.
We used a gradient-based numerical optimizer (Ipopt [Wächter and Biegler, 2006] in our

implementation) to solve Equation 3.5. We enforced the elasticity equilibrium constraint
using the adjoint method. The optimizer only needs to take the function values of 𝒮 and Φ
along with their gradients as input.

3.4.1 Elasticity Objectives

We used two types of objective functions for the elasticity term in our topology optimization
algorithm. These two types of objectives allowed us to design a wide range of objects.

Target Deformation Our algorithm takes a vector of nodal target displacements and
boundary conditions (external forces, fixed points, etc.) as input. Then, it automatically
optimizes the material distribution over the object domain to achieve the desired linear
deformation assuming a linear elastic behavior.

We define the deformation objective as

𝒞𝑑(e,u) = (u− û)𝑇D(u− û), (3.8)
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where û is the vector of the target displacements, D is a diagonal matrix that determines
the importance of each nodal displacement. We use D to define the subset of nodes that we
are interested in. For example, we can set most entries of D to zero and focus on a portion
of the domain (see Figure 3-20).

Topology optimization algorithms such as optimal criteria and MMA require the gra-
dient of the objective function. The deformation objective can be differentiated using two
simulations as follows. The first simulation computes the deformation of the design with the
current material parameters.

u = 𝐾(p)−1fext.

The second simulation computes
𝐾(p)−1(u− û).

Putting these two equations together, we can compute the gradient with respect to material
parameters.

𝜕𝒞𝑑(e)

𝜕e
= (u− û)𝑇𝐾(p)−1u

𝜕𝐾

𝜕p
.

Minimum Compliance We have experimented with the same objective as the one used
in the standard topology optimization algorithm where the compliance 𝒞𝑐 is defined as

𝒞𝑐(e,u) = u𝑇K(e)u. (3.9)

The gradient of this objective is

𝜕𝒞𝑐(e)

𝜕e
= u𝑇 𝜕𝐾

𝜕e
u.

This gradient needs only one simulation to be computed.
In the commonly used SIMP formulation, the stiffness matrix K𝑖 of each cell 𝑖 depends

on the artificial density value 𝜌𝑖 through an analytical formula such as K𝑖 = 𝜌3𝑖K0 where
K0 corresponds to the stiffness matrix of the base material. In contrast, the stiffness matrix
in our objective function is directly computed from the material parameters of the material
space and forced to correspond to a realizable material thanks to our gamut constraints.

Like previous work, we regularized the problem to avoid checkerboard solutions by apply-
ing a smoothing kernel on the gradient to favor smooth variations of the material parameters
over the object layout. Our optimizer supports multiple objectives by linearly combining
weighted objective functions.

3.5 Mapping Material Properties to Microstructures

After running the topology optimization algorithm, we generate a printable result by replac-
ing each cell in the object lattice by a microstructure whose material properties match the
optimal ones. Material properties of the microstructures are computed using the homoge-
nization theory which is more accurate with a smooth transition between the geometries of
neighboring cells. While smoothness in the material parameters can be easily enforced, it
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Figure 3-13: Under periodic boundary conditions, a microstructure pattern can be translated
while preserving exactly the same material properties. These variants with the same prop-
erties givens us room to select structures while taking into account boundary connectivity.

does not imply topological similarity of nearby microstructures. For example, any transla-
tion of a given microstructure in a periodic tiling will result in a microstructure geometrically
different but with exactly the same mechanical properties (Figure 3-13). Fortunately, our
database is very dense and multiple microstructures generally map to similar points in the
material property space, offering several variants. To further increase the number of possi-
bilities, we also incorporate an additional exemplar for each microstructure by translating
it by half its size, which preserves its cubic or orthotropic symmetry without changing its
properties. We then run a simple but effective algorithm that picks the microstructure ex-
emplars that minimize the boundary material mismatch across adjacent cells. We quantify
this mismatch by

ℐ =
𝑁𝑐∑︁
𝑖=1

ℐ𝑖,

where ℐ𝑖 is the contribution associated to the cell 𝑖 and corresponds to the number of bound-
ary voxels filled with materials that are different from the ones of the voxels’ immediate
neighbours across the interfaces.

Our algorithm proceeds as follows:

∙ For each cell, select a list of possible candidates by picking all the microstructures with
material properties in the vicinity of the optimal material parameter and initialize the
cell with a random candidates.

∙ Compute the mismatch energy ℐ𝑖 associated to each cell 𝑖 and sort the cells according
to their energy.

∙ Pick the first cell in the sorted list, i.e. the one with the highest energy and assign to
it the microstructure candidate that decreases the energy the most. If the cell energy
does not decrease, move to the next cell in the list.

∙ Update the mismatch energies of all the impacted cells and we update the priority list.

∙ Repeat the last two steps until the mismatch energy ℐ cannot be decreased anymore.
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Figure 3-14: Gamuts computed with our discrete-continuous sampling scheme for 2D cubic
structures (left), 2D orthotropic structures (second from left), 3D cubic structures (second
from right) and 3D cubic structures with 0.35 as Poisson’s ratio (right). The plots show
the results for the projection of the gamuts on the plane defined by the macroscale Young’s
modulus along the x axis (normalized by the Young’s modulus of the stiffest base material)
and the Poisson’s ratio corresponding to a contraction along the y-direction when the material
is stretched along the x-direction. The blue dots correspond to the generated samples,the
orange dots correspond to the microstructures from Schumacher et al. [2015] and the yellow
dots correspond to the microstructures from Panetta et al. [2015].

3.6 Results and Discussion

We first analyzed our microstructure sampling algorithm for 2D and 3D microstructure
gamuts. Then we used these precomputed gamuts to design and optimize a wide variety of
objects with our topology optimization algorithm.

3.6.1 Microstructure Sampling

We evaluated our method on 2D and 3D microstructures made of one or two materials.
For the 2D case we considered patterns with cubic and orthotropic symmetry that can be
described by 4 parameters (3 elasticity parameters and density) and 5 parameters (4 elasticity
parameters and density) respectively. In 3D we computed the gamut corresponding to cubic
structures with 4 parameters. In all cases, the microstructure resolution is set to 16. We
used two isotropic base materials with Young’s modulus differed by a factor of 1000. They
both have a Poisson’s ratio of 0.45. We initially computed the databases for two-material
microstructures, but also adapted these databases for microstructures made of a void and
a stiff material. In the later case, we replaced the softer material by void, filter out all the
microstructures with disconnected components and, in the 3D case, filled the enclosed voids
and recomputed the homogenized properties. We provide a comparison between the initial
and postprocessed databases in the supplementary material. The resulting gamuts are also
depicted in Figure 3-14. Our databases contain 274k, 388k and 88k 2D cubic, 2D orthotropic
and 3D cubic microstructures respectively and took from 15 hours to 93 hours to compute,
which correspond to 68, 19 and 5 sampling cycles, respectively. We first compared our results
to the ones obtained by Schumacher et al. [2015] and observed a significant increase in the
coverage of the material space, even for 2D microstructures with a coarser discretization.
This comforts us with the idea that topology optimization alone, while helpful to locally
improve the microstructure geometries, is suboptimal for discovering the entire gamut of
physical properties. The diversity of the microstructures that we obtained is also much
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Figure 3-15: Gamut corresponding to 2D cubic microstructures made of two materials and
void. The Young’s modulus of the microstructures is plotted using a logarithmic scale. We
show above some examples of microstructures lying near the estimated boundary of the
gamut, i.e. with extreme material properties. The dark color corresponds to the softer
material, while the light grey color is used for the stiffer material.

richer, thus providing a larger set of options for the practical use of microstructures. Note
that they employed some regularization to avoid thin features. For 163 microstructures,
we found regularization unnecessary since they are manifold and have a minimal feature
size of 1/16 of the lattice size, which is the same order of magnitude as the thinnest parts
of Schumacher’s microstructures. For completeness, we also compared our database of 3D
microstructures to the one of Panetta et al. [2015] at 163 and 643 grid resolutions (Figure
3-14, right). Our initial database was computed with 0.48 as Poisson’s ratio. For this
comparison, we then recomputed the material properties of the microstructures using the
same Poisson’s ratio as Panetta’s at 0.35, which affects the extremal values of the obtained
gamut. For the 643 microstructures, we used morphological operations in the discrete step
and sensitivity filtering with a radius of 3 voxels in the continuous step to limit the minimum
feature size to 1/32 of the lattice size [Sigmund, 2007]. Note that this comparison is provided
for reference only since our microstructures are cubic while Panetta’s are isotropic (a subset
of cubic). Furthermore, they target a different 3D printing technology with self-supporting
constraints not imposed here. Finally, we also obtained a dense sampling in the interior of
the space, as a result of the randomness inherent to our approach. This reduces the need
of running costly optimization in these areas and occurs even if we do not explicitly enforce
any sampling there.

We also experimented with three-material 2D cubic microstructures. Two of the materials
are solids with Young’s moduli differing by a factor of 1000 and with 0.48 as Poisson’s ratio,
plus a void material. The resulting database contains about 800k microstructures that
can potentially be printed. The corresponding gamut and some examples of the generated
microstructures are shown in Figure 3-15.
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Figure 3-16: Material property distributions optimized in the orthotropic (top left), cubic
(bottom left), isotropic (top middle) and an analytically defined gamut 𝐸 ≥ 𝜌3𝐸0 (bottom
middle), with the material property space dimensions ranging from five to two. We compare
our algorithm with the standard SIMP method with power index 𝑝 = 1 (top right) and 𝑝 = 3
(bottom right). For these figures, we computed the color of each cell by mapping every base
vector of the normalized parameter space to a color range and linearly interpolating the
colors associated to each of the parameters. In this example, the left side of the cantilever is
fixed while a force distribution is applied to the bottom side (see red arrows in the top left
picture).

3.6.2 Topology Optimization

We tested our topology optimization algorithm on a number of simple test cases and large
scale examples. Detailed analysis and discussion of the results is provided below.

Impact of the Material Space We evaluated the impact of the chosen material space
on a 2D cantilever beam with optimized minimum compliance. We tested our topology
optimization algorithm with isotropic, cubic and orthotropic gamuts as well as the virtual
materials used in the traditional SIMP approach. In the SIMP method, the stiffness of the
material is 𝐸 = 𝜌𝑝𝐸0, 𝑝 ≥ 1, where 𝐸0 is the base stiffness and 𝜌 is the material density
variable. We also tested our algorithm on an analytical gamut with allowed stiffnesses 𝐸
defined by 𝐸 ≤ 𝜌3𝐸0. The results are shown in Figure 3-16. It can be noted that, as the
dimension of the material space increases, the final energy of the system decreases. This
is to be expected since higher dimensional space means larger gamuts. Thus, when using
cubic materials, the minimum compliance objective function reaches 3% lower energy than
the standard SIMP method with power index 3. This difference reaches 11% when we use
orthotropic materials. It is worth noting that the lowest elastic energy is achieved when
we use the traditional SIMP method with 𝑝 = 1 (as shown in Figure 3-17). However, this
solution does not correspond to a realizable structure since some of the optimized materials
do not correspond to any microstructure.
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Figure 3-17: Convergence tests. Variation of the objective energy (left) and the elastic
energy right of a beam being optimized for minimum compliance as the optimization pro-
gresses. The convergence plots correspond to the beam of Figure 3-16 when optimized using
different material spaces (top), different resolutions for the beam lattice (middle) when using
cubic microstructures, and different initial material properties for the cubic microstructures
(bottom).

Matching Quality We evaluated for different examples the matching quality of the target
deformation optimization. For the first test, we requested a beam to make an “S” shape when
under tension (Figure 3-18). In order to avoid overfitting, we applied target displacements on
the vertices of the boundary cells only. As depicted in the figure, the use of microstructures
largely improves the global shape of the beam, which closely matches the target deformed
shape. This becomes even more striking when compared to the behavior of a beam made
of a homogeneous material. We also validated our algorithm by designing a soft ray whose
wings can flap using a compliant mechanism (see Figure 3-19 and accompanying video).
Boundary conditions are applied on two circular areas located along the spine of the ray.
Each disk has one degree of freedom for deformation, namely contracting or expanding along
the disk normals. This mechanism resembles one of many pneumatics-driven soft robots.
We define two target deformation objectives corresponding to the flapping of the wings
up and down, when alternatively contracting and expanding the two disks’ boundaries. By
running our multi-objective topology optimization framework, we can compute an optimized
material design that can achieve both deformation modes when the corresponding boundary
conditions are exerted.

Convergence and Robustness We evaluated the convergence rate of our topology op-
timization both on the minimum compliance problem and with the target deformation ob-
jective. For the minimum compliance problem, we used the same loading as the one of
Figure 3-16. The corresponding results are shown in Figure 3-17 where we plot both the
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Figure 3-18: Optimizing a beam to take an “S” shape under compression (left column).
A beam with homogeneous material can only compress uniformly (middle column). The
optimized beam can deform as requested (right column). Target displacements are set on
the horizontal boundary cells. The color plot for the bottom beams shows the deformation
error of each cell defined by Equation 3.8.

Figure 3-19: Designing a soft ray. The wings of the ray flap up and down when cells on
its spine contract and expand. Constrained vertices are colored in green. The deformations
achieved with the optimized materials are displayed on the bottom row.
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deformation energy of the structure as defined in Equation 3.9 and the original objective of
the problem 3.5 that also includes the volume term defined by Equation 3.7. For all these
examples, the algorithm converged after a couple of dozen iterations, irrespectively of the
lattice resolution, i.e. the number of variables and the number of non-linear constraints.
This demonstrates the scalability of the our algorithm. We also tested the robustness of
our algorithm by starting with different initial conditions. In this case, we initialized the
material parameters of each cell with a random material point projected onto the boundary
of the gamut. Similar to other topology optimization schemes, we have no guarantee that we
reach the global minimum of the function, and indeed, our algorithm sometimes converges
to different solutions. However we note that these different solutions have a similar final
objective value and are therefore equally good.

For the evaluation of the target deformation optimization, we tested the convergence rate
when optimizing for functional mechanisms. To this end, we designed several grippers that
can grasp objects by moving their tips when external forces are applied to their extremi-
ties. We experimented with four sets of boundary conditions, namely, pulling and pushing
the back of the gripper horizontally, and compressing and stretching the extremities of the
gripper vertically. As shown in Figure 3-20, these different settings lead to different material
structures. The deformation errors of all the four designs converge to a low level after a
couple of hundreds of iterations.

Accuracy We evaluated the accuracy of our algorithm on several optimized structures
by comparing the deformation obtained when using the optimized homogenized material
properties for each cell to the one obtained by a high resolution simulation in which every cell
is replaced by its mapped microstructure. We first evaluated the accuracy on a deformable
bar, one side of which was rigidly attached while the other was subject to different sets of
external conditions (see Figure 3-21). We used a 8× 2× 2 lattice to represent the bar with
homogenized cells, which translates into a 128 × 32 × 32 grid for the full resolution mesh.
Similar stretching, bending and shearing behaviors were obtained for both sets of models.
From a quantitative point of view, the differences amount to 5-10% in terms of average
vertex displacement and 9% − 33% in terms of elastic deformation energy (see Table 3.1).
We further evaluated the effects of material patterns by running a similar comparison on
a cube made of periodic layers of similar microstructures and with random assignments of
microstructures (Figure 3-22). As reported in Table 3.1, we show that the ratio between the
magnitudes of the average vertex displacement differences is between 4% and 7%, and the
elastic energy difference is between 10% and 19%.

Finally, we also compared the behaviors of one of the grippers (Figure 3-24). The original
optimized gripper is made of 3k elements while the high resolution version is made of 4M
voxels. Overall, the two models exhibit similar global deformation behaviors, in particular
in the tip area. Some differences can be observed on the left side of the gripper for which
the high-resolution model exhibits a lower effective material stiffness than its homogenized
counterpart. With the same displacement boundary conditions applied, the high-resolution
model deforms about 25% more than the homogenized model. The differences observed be-
tween the homogenized model behaviour and the full resolution simulation can be explained
by two major factors: (i) numeral stiffness when using larger elements which tends to make
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Figure 3-20: Designing functional grippers. The left column shows the rest shape of the
gripper and the target deformation for the tip. The green dots correspond to the fixed
vertices while the blue arrows are the target displacements. The middle and right columns
correspond to the optimized results obtained for the specified boundary conditions. The
inset pictures color-code the initial and final deformation error for the different examples.
The convergence plots in the bottom row depict the change in the sum of the deformation
errors corresponding to all the cells (left) and the value of the maximal cell error contribution
(right) as the optimization progresses.
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Figure 3-21: Comparison of simulated beams with homogenized material properties (inset
pictures) to the ones using full microstructures (large pictures).

Figure 3-22: Comparison of simulated cubes with different material patterns modeled by
homogenized cells (inset pictures) and full resolution microstructures (large pictures).

the homogenized mesh slightly stiffer in particular when bending deformation arises, (ii)
violation of the periodicity assumption when replacing each cell by a single microstructure.
This issue can be reduced by replacing each cell by a tiling of microstructures. This was
verified on a cube made of a periodic arrangement of a single microstructure (see Figure
3-23). And indeed, as we increase the resolution of the simulation grid, the error between
the homogenized model and the full resolution version decreases and converges to similar
values.

Orthotropic materials We tested the behavior of our algorithm in a 5-dimensional space
by using the gamut of 2D orthotropic microstructures depicted in Figure 3-14 (middle). To
this end, we used a regular lattice whose vertices on the left side where fixed and we applied
parallel forces on the vertices of the opposite side. The goal in the test was to minimize the
compliance of the structure. As can be seen in Figure 3-25 and in the accompanying video, we
experimented with different force directions. Unsurprisingly, when a single cell is considered,
the microstructure that we obtain has a structure that is aligned with the direction of the
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Figure 3-23: Simulation of a cube made of a periodic arrangement of a single microstructure
at different resolutions. Inset pictures correspond to the model with homogenized material
properties, while main pictures correspond to the full resolution simulations.

Figure 3-24: Comparison of a simulated gripper with homogenized material properties (inset
picture, left) to the one using full microstructures (main picture, left). The figures on the
right show the vector field of vertex displacement of the two models. The blue-to-red colors
represent the magnitudes of the displacements.

Table 3.1: Error of simulation using homogenized materials (SI units). The simulated shapes
are shown in Figure 3-21, 3-22, 3-23 and 3-24 The size of one microstructure is set to 1×1×1.

Example Mean displace-
ment

Mean displace-
ment difference

Elastic energy
homogenized

Elastic energy
full resolution

Beam 1 6.47×10−3 6.04×10−4 6.85×10−5 6.17×10−5

Beam 2 6.47×10−3 6.04×10−4 1.63×10−5 1.08×10−5

Beam 3 5.07×10−3 4.97×10−4 2.38×10−4 2.07×10−4

Beam 4 8.78×10−3 4.45×10−4 3.33×10−4 2.30×10−4

Cube 1 3.62×10−3 2.86×10−4 3.64×10−3 3.20×10−3

Cube 2 4.35×10−3 1.94×10−4 6.82×10−3 5.94×10−3

Cube 3 5.42×10−3 4.22×10−4 7.81×10−3 6.32×10−3

Cube 4 5.22×10−3 4.89×10−4 2.08×10−2 1.63×10−2

Cube 5 5.21×10−3 2.17×10−4 1.89×10−2 1.63×10−2

Cube 6 5.21×10−3 1.32×10−4 1.82×10−2 1.63×10−2

Gripper 1.32×10−2 6.90×10−3 8.67×10−3 5.70×10−3
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Figure 3-25: Optimizing the orthotropic material parameters of a single cell (left) and a
32 × 32 lattice of cells (right) subject to directional forces. The vertices on the left side
of the layout are fixed while forces are applied on the right vertices as depicted by the
red arrows. Our simple but effective tiling algorithm allows to nicely transition between
microstructures of smoothly material properties (right, top).

forces (see Figure 3-25, left). For a higher resolution lattice this is no longer true and the
resulting overall structure becomes less intuitive (see Figure 3-25, right). Note that the
resulting material distribution varies smoothly. By considering various alternative for each
material point, our tiling algorithm is able to map the material properties to microstructures
which are well connected.

3.6.3 3D-Printed Designs

Leveraging our two-scale approach, we used our topology optimization algorithm to generate
a wide variety of high resolution models that we 3D-printed. We used a Stratasys Objet
Connex 500 and the two base materials Vero Clear and Tango Black Plus and used the
database containing the three-dimensional cubic microstructures. The sizes and computation
times of the resulting models are outlined in Table 3.2.

Since Ipopt performs a line search at each gradient step, one single step may correspond
to multiple simulations. We show the average time required for taking a step in the last
column of Table 3.2. For these large scale examples, Ipopt takes two hundred iterations
in average to find a local minimum. Since our problem is formulated as a very general
constrained continuous optimization, it is independent of the optimization package that is
used and its speed could potentially be further improved by using alternative minimizers.
We found Ipopt to be a good choice for its capability to efficiently handle a large number
of inequality constraints, which is not the case of other popular minimizers used in topology
optimization such as the method of moving asymptotes (MMA).

Our algorithm is mainly directed towards engineering applications and targets the design
of objects undergoing small deformations. In the following examples, we sometimes inten-
tionally exaggerated the target displacements (and scaled the external forces accordingly)
for better visualization, which does not change the output of the algorithm with a linear
material model.
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Table 3.2: Statistics on the 3D-printed models. The last row uses the database of 643

microstructures.

Example Grid Size # Voxels Time per FEM
Solve [s]

Time per Step [s]

Beam 96×24×4 38M 0.7 5
Flexure 32×32×16 67M 1 12
Gripper 64×32×8 67M 1.7 10
Bridge 128×64×32 1074M 27 81
Bridge 2 320×160×80 1074G 1.3k -

Beams with controlled deformation behaviour We started by designing a 3D hol-
lowed beam with a desired deformed shape. The beam was stretched by moving vertices on
two opposite sides. Our topology optimization algorithm was run using a target deforma-
tion objective. The resulting optimized material properties and the 3D-printed structure are
depicted in Figure 3-26.

Figure 3-26: An optimized hollow beam with target deformation. The left figure shows
the target deformation and optimized material distribution. The right figure shows the
3D-printed structure and the achieved deformation.

Multi-Objective Flexure Design We tested our algorithm on a multi-target deforma-
tion setting by optimizing the structure of a flexure mount with two different target shapes
(see Figure 3-27). Here, our goal is to design a flexure that resists vertical loads while re-
maining compliant to horizontal loads. We assume that the object mounted on the flexure is
connected to the flexure using a cylindrical connector that transmits the forces to the flexure
via the connecting area. In the first scenario, vertical forces are applied to the points of the
cylindrical area and we ask the flexure to stay as close as possible to its rest configuration.
In the second scenario, horizontal forces are applied to the points of the cylinder and we ask
the flexure shape to match the shape shown in the Figure 3-27.

Gripper We verified the functionality of our grippers by fabricating two of them. For
these results we ran the optimization on high resolution meshes of the version that grasps
the object when the extremities of the gripper are pressed (see Figure 3-28). By changing
the parameter controlling the ratio of the soft material, different designs based on different
mechanisms can be achieved. When more soft material is used the gripper achieves its target
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Figure 3-27: Optimizing a flexure mount. The flexure is connected to an object thanks to a
cylindrical connector. We leave space for this connector by keeping a cylindrical area of the
design layout empty of material. The material distribution of the flexure is optimized for
two sets of external forces applied to the cylindrical area. Under vertical load, the flexure
should stay close to the rest shape while under horizontal load, the flexure should deform
according to the inset figure.

deformation thanks to out-of-plane bending, while for stiffer designs, the grasping motion is
achieved via in-plane deformation.

Minimal Compliance Examples To demonstrate the scalability of our algorithm, we
designed two bridges of increasing resolutions. The first bridge was optimized using a lattice
of half a million cells which corresponds to 1 billion voxels (Figure 3-29). For the second
bridge, we used the database of 643 microstructures and a layout made of 4 million cells,
which amounts to 1 trillion voxels. We initialized the topology optimization by running
the algorithm on a lower resolution grid with 1.4 million elements and used the resulting
parameters as initial material parameter values for the higher resolution optimization.
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Figure 3-28: 3D-printed functional grippers. By setting different target ratios of the rigid
material, different designs can be obtained. When more soft material is used the grasp-
ing behavior of the gripper is obtained via out-of-plane bending (top), whereas more rigid
material is used, the gripper deformation remains planar (bottom).

Figure 3-29: Optimizing a bridge. The initial layout corresponds to a 128x64x32 regular grid.
We apply uniform loads on the upper plane deck. We compute the material parameters and
set cells with extremely low stiffness to void (top left). We look up the microstructures and
3D print the bridge (top right). We scaled the problem to 1 trillion voxels by using a lattice
of 4 million elements where each element corresponds to a 643 microstructure (bottom).
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Chapter 4

Designing Dynamic Mechanisms

The realistic simulation of highly-dynamic elastic objects is important for a broad range
of applications in computer graphics, engineering and computational fabrication. However,
whether simulating flipping toys, jumping robots, prosthetics or quickly moving creatures,
performing such simulations in the presence of contact, impact and friction is both time
consuming and inaccurate. In this paper we present Dynamics-Aware Coarsening (DAC)
and the Boundary Balanced Impact (BBI) model which allow for the accurate simulation of
dynamic, elastic objects undergoing both large scale deformation and frictional contact, at
rates up to 79 times faster than state-of-the-art methods. DAC and BBI produce simulations
that are accurate and fast enough to be used (for the first time) for the computational design
of 3D-printable compliant dynamic mechanisms. Thus we demonstrate the efficacy of DAC
and BBI by designing and fabricating mechanisms which flip, throw and jump over and onto
obstacles as requested.

4.1 Introduction

We present a pair of new methods to accurately simulate geometric and material nonlinear-
ities subject to frictional contact, large loads and high-speed collisions at rates significantly
more than an order-of-magnitude faster than previously available. Our methods combine
efficiency and accuracy to enable design-for-fabrication optimization. They can be used for
both fast, realistic animation and engineering analysis.

Here we look towards a new generation of efficient mechanisms for practical dynamic
function [Lipson, 2014, Reis, 2015, Reis et al., 2015, Rus and Tolley, 2015]. In order to
extend physics-driven computational design to this domain, however, a bottleneck must be
overcome - the physical simulation itself. Simulations must accurately replicate the behavior
of elastic materials subject to high-speed, transient dynamics. Modeling these systems com-
bines many of the remaining grand challenges in simulating elastica. Specifically we must
accurately resolve nonlinear elasticity, large deformations, stiff materials, high-speed dynam-
ics, rapid loading and unloading, frictional contact, internal friction, high-speed collisions,
and rebound.

State-of-the-art FEM systems currently able to accurately match these effects are exceed-
ingly expensive - runtimes on the order of days are standard to perform a single simulation
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Launch-adapted mesh Landing-adapted mesh

Simulation mesh Remeshing time(s) Tetrahedra Nodes

Launch-adapted 1.550 150,192 222,109

Landing-adapted 0.338 31,261 51,999
DAC-coarsened none 5,488 7,898

Figure 4-1: Comparing adaptivity and coarsening. A tetrahedral model of a jumper is
adaptively remeshed to capture input stress fields from its launch and landing states. We
compare the resulting element and node counts to our DAC-coarsened model. We set the
minimum edge length for remeshing to one that was experimentally found to yield convergent
numerical results.

in many cases [Belytschko et al., 2013]. Thus, while generating a single simulation for vi-
sualization or animation is already time consuming, the many simulations required during
design optimization compound an already prohibitive computational burden.

4.1.1 Efficiency with Accuracy

Let us explore four potential solutions for constructing fast and accurate simulation algo-
rithms: (1) higher-order elements, (2) adaptive meshes, (3) reduced models, and (4) nu-
merical coarsening. Can these methods provide the necessary efficiency to enable design-
optimization while obtaining the predictive accuracy required to match fabricated results?

Higher-order elements offer us the opportunity to replace thin regions of our models with
elements that capture higher-order deformation modes. While an attractive strategy, this
poses two challenges. First, due to changing design parameters, we will need to identify
suitable regions on-the-fly in order to perform this replacement. Second, coupling swapped-
in higher-order elements to other element types introduces overhead. Consider, for example,
replacing lower-order hexahedra with plate elements in these regions. We must then ensure
continuity of displacements between plate-like portions of the design and thicker, volumetric
portions. This, in turn, requires introducing difficult coupling constraints Bergou et al.
[2007], Martin et al. [2010]. Finally, even with such additional efforts, these substitutions
may not always improve computational performance as high-order elements contain more
DoFs than their low-order counterparts Belytschko et al. [2013].

Adaptive meshing allows us to reduce element counts in material regions where refinement
is less critical. Let us ignore the difficulty of implementing adaptive meshing and the per
time step cost to remesh. Even so, adaptive meshes are challenging in our setting. We model
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(a) Modal model with increasing deformation

Large deformationRest Small deformation

15%

0%

(b) Modal model accuracy with respect to nonlinear FE

Figure 4-2: Linear modal models suffer from distortion as deformations grow. In (a) we
illustrate increasing deformations, left to right, with corresponding inflation errors. Even
for smaller deformations, (a) middle, the linear modal model still introduces significant
distortions leading to modeling inaccuracies. In (b), left, we overlay simulations of small
deformation performed respectively with the linear modal model (red) and the coarsened
nonlinear FE model (grey); and, on the right, evaluate accuracy of the modal model. During
simulation, even these smaller deformations introduce inaccuracies in the modal model due
to element inflation; here up to 13.7%.

objects that undergo rapidly changing boundary conditions and globally varying stress fields
due to contacts, loading and impacts. Adaptive meshing in our setting must then, necessarily,
feature high numbers of elements to capture these details. See Figure 4-1. Here, using our
experimentally validated, accurate element edge length as adaptive meshing threshold, our
tetrahedral mesh contains 6.5X to 28X more nodal DoFs than our corresponding DAC-
coarsened mesh. The DAC-coarsened mesh is likewise simpler to implement and has no per
time step computational cost.

Reduced models utilizing linear modes Hauser et al. [2003], James and Pai [2002] are
widely applied to accelerate dynamic simulations. The key issue here is that linear modal
models provide only a linear approximation of the deformation space leading to inaccurate
linearization artifacts, such as swelling during rotation; see Figure 4-2. Optimized quadrature
approaches, in turn, can afford efficient integration of non-linear forcing functions, but do not
alleviate these artifacts An et al. [2008] when relying on an underlying modal deformation
space. Finally, nonlinear modal models Barbič and James [2005] can alleviate some of these
issues but so-far remain challenging to incorporate in the design process in comparison to
their linear counterparts [Chinesta et al., 2013].

We begin by observing that numerical coarsening offers an exciting alternative for effi-
cient yet predictive FE modeling. Coarsening methods effectively apply coarse resolution FE
meshes as reduced DoF models and then seek material models that reproduce the behavior
of a high-resolution FE counterpart. Analytical solutions for coarsening have been developed
for linear material models (models where the stress varies linearly with strain) Kharevych
et al. [2009], Nesme et al. [2009], Torres et al. [2016]. Due to this linear assumption, and
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High Resolution
Data-Driven Coarsening

Frame 0 Frame 40

Figure 4-3: Dynamics-oblivious coarsening is significantly inaccurate for dynamic simulation.
Left: two twisted elastic bars, initialized to the same configuration, are time-stepped in a
dynamic simulation with an energy based, data-driven coarsening (DDFEM) model (blue)
and a high-resolution FEM mesh (green). Right: small localized errors in the material
model of the DDFEM simulation aggregate across the mesh over time to quickly produce
large global errors when compared to the high resolution solution.

similarly to the linear modal models discussed above, we find them difficult to apply for
the accurate modeling of the nonlinear materials required for 3D-printed objects. Unfor-
tunately, while coarsening offers promise, prior work, to our knowledge, does not account
dynamic effects, inertial properties, nor material damping characteristics. As we see in
Figure 4-3, this causes even the nonlinear DDFEM to produce highly inaccurate dynamic
simulations. Building on the promise of coarsening techniques and inspired by recent de-
velopments in frequency matching for plausible computer animation Li et al. [2014], Wang
et al. [2015], we develop a new, dynamics-aware coarsening (DAC) method that, in contrast
to prior approaches, provides well-over an order-of-magnitude performance enhancement,
while maintaining fabrication-level accuracy when modeling highly dynamic motions subject
to frictional contact. Our method does so without complex substructuring, does not require
adaptive remeshing, accounts for dynamic effects including damping, and does not introduce
prohibitive linear modeling artifacts and so is applicable to a wide selection of nonlinear
constitutive models for 3D-printed materials.

4.1.2 Impact Response for Elastic Materials

Even with a suitably accurate FE solution to model material dynamics, accurate impact re-
sponse for elastic materials on collision remains highly challenging. To capture the bounces
and rebounds of elastic mechanisms coming into contact with the ground - consider for ex-
ample the heel strike of a sneaker - we need to get this right. State-of-the-art, implicit time-
stepping methods for FEM with contact solve variational forms of time-steppers, e.g., varia-
tional Implicit Newmark, subject to additional, fully implicit contact and friction forces Kane
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Drop position Top height reached  
after collision 
in experiment 

Top height reached after collision per method

Complementarity DKE BBI 

Figure 4-4: Comparison of complementarity Newmark integration, DKE Stabilization and
our BBI model for the impact resolution of an elastic, 3D-printed block. BBI closely matches
the maximum rebound height achieved by the experimental result while both the Comple-
mentarity and DKE methods overestimate the rebound significantly.

et al. [1999], Pandolfi et al. [2002]. These form so-called nonsmooth or complementarity in-
tegrators.

However, these complementarity integrators have two well-known flaws Deuflhard et al.
[2008]: (1) these methods can yield spurious oscillations on the contact boundaries and (2) the
effective impact response of these methods is too energetic. Effectively the normal velocity on
impact along the elastic boundary should be dissipated completely. Instead, complementarity
methods with Newmark will generate an entirely incorrect elastic restitution; see Figure 4-4.
To address these problems Deuflhard et al. [2008] introduced the now-standard DKE contact-
stabilization step to filter contact response with projection. In the limit, DKE makes the
impact-response model consistent, while in FE codes it is applied as an effective strategy
to recover from the well-known limitations of implicit integration with impact. However,
it remains widely acknowledged that the right-way to accurately model high-speed collision
response with implicit FE remains an open question at this time - not only in graphics - but
more broadly in scientific computing as well. As an example consider Figure 4-4 where we
see that both the complementarity model and the DKE filter produce different but equally
incorrect predictions of the response of a stiff elastic block dropped on the floor. Here we offer
a new, Boundary-Balancing Impact (BBI) model for FE that gains us accurate prediction of
impact response for the stiff 3D-printed materials we focus on here; see Figure 4-4.

4.1.3 Summary and Contributions

High-fidelity simulation methods for elastodynamics are too slow for use in fabrication design
tasks while existing strategies to reduce the simulation cost of elastica (including adaptive,
reduced and coarsened models) are too inaccurate and/or too expensive to employ. Finally,
existing FE models for simulating elastic collision and rebound miss critical compliance
coupling in the filter stage.

We have exposed and analyzed the limitations of simulation methods for the predictive
modeling of elastodynamics at rates sufficient for fabrication design optimization. Next, we
develop our Dynamics-Aware Coarsening (DAC) method to address this need (Section 4.3).
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Figure 4-5: Bottom: the dynamic behavior of a 3D-printed, elastic jumping mechanism in
experiment. Top: our DAC-coarsening combined with our BBI impact model generate a
simulation that predictively captures this experimental behavior at rates 79X faster than
state-of-the-art FEM.

DAC jointly identifies and predictively simulates fabricated materials. To address current
limitations in FE collision-response filtering we then introduce our Boundary Balancing
Impact (BBI) model (Section 4.4). We then validate these contributions by comparing
simulated results generated by DAC and BBI with real-world results experimentally obtained
from a range of compliant 3D-printed jumping and throwing mechanisms that flip, throw
projectiles, jump onto obstacles and jump over walls (Section 4.5.4).

4.2 Simulation Preliminaries

Accurate time-varying tracking of energy dissipation is key to accurate dynamic simula-
tion Marsden and West [2001] and so we rely on implicit Newmark time integration, a
discrete variational integrator Kane et al. [2000] with consistent high-quality energy track-
ing. We experimented with other integrators, including linearly implicit Newmark, Implicit
Euler, and BDF2, but found them to be wanting in either stability or energetic behavior;
see our Supplemental for details.

4.2.1 Discrete Model

We begin with a standard elastic material model for 3D printed materials. To capture stiff
elastic response of 3D-printed materials we use the neo-Hookean material model, augmented
with Rayleigh damping to capture transient dissipation of vibrations, and discretize with
eight-node hexahedral finite elements. The continuous equations of motion derived from
Newton’s second law is

Mv̇ = F(q) + D(q)v, (4.1)

where M is the mass matrix, F(·) is the internal force vector, D(·) = 𝑎M+𝑏K(·), with 𝑎, 𝑏 ∈
R+ is the Rayleigh damping matrix, M is the stiffness-consistent mass-matrix [Belytschko
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et al., 2013], K(·) = −∇F(·) is the tangent stiffness matrix, and q,v ∈ R3𝑛 are respectively
the nodal position and velocity vectors. We start with a second-order, implicit Newmark
time discretization

v𝑡+1 = v𝑡 +
ℎ

2
(v̇𝑡 + v̇𝑡+1),

q𝑡+1 = q𝑡 +
ℎ

2
(v𝑡 + v𝑡+1),

(4.2)

where ℎ is the timestep size. For convenience, we define

𝛿𝑡+1 = q𝑡+1 − q𝑡. (4.3)

Substituting Equation 4.2 and 4.3 into Equation 4.1, we arrive at the following discrete
dynamics equation to solve for the unknowns q𝑡+1 and v𝑡+1

M𝛿𝑡+1 = b𝑡 + ℎ2

4
F(q𝑡+1)− ℎ2

4
D(q𝑡+1)v𝑡+1, (4.4)

q𝑡+1 = q𝑡 + 𝛿𝑡+1,

v𝑡+1 = 2
ℎ
𝛿𝑡+1 − v𝑡,

(4.5)

where

b𝑡 = ℎMv𝑡 + ℎ2

4
F(q𝑡)− ℎ2

4
D(q𝑡)v𝑡. (4.6)

In the absence of dissipative forces this method is symplectic and momentum preserv-
ing [Kane et al., 2000]. With dissipation we find that integration gives us accurate book-
keeping of system energy at comparable cost to implicit Euler.

4.2.2 Material Parameters

No matter how good our energy bookkeeping, the overall fidelity of our method is critically
determined by the accuracy of the material parameters we select. While many material
parameters are reported in the literature, there remains large and significant variation in
these values across 3D-print batches, printing orientations and curings; see §5. For predictive
simulation we need to identify these values. In addition, we must model dissipation requiring
us to determine unreported damping properties; e.g., 𝑎 and 𝑏 in the Rayleigh model. Finally,
as discussed below and complicating matters even further, these material parameters are
discretization dependent at non-convergent spatial resolutions. In the next section we will
detail our DAC model to capture dynamic deformation, stiffness and damping at coarsened
spatial resolutions.

4.2.3 Contact and Friction

For contact we need to model nonpenetration constraints and frictional contact forces that
resist sliding along interfaces. Contacts are between object parts or between a part and a
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fixed boundary such as the ground. At each time step we apply continuous collision detection
to the predicted trajectory to gather contact constraints into a contact set 𝒞.

To simplify the following, for each such contact 𝑘 ∈ 𝒞, the relative acceleration between
material points 𝑥𝑖 and 𝑥𝑗 (at contact 𝑘) can be expressed via the map Γ𝑘 : q̇→ �̇�𝑖− �̇�𝑗. See
our Supplement for details on construction of Γ𝑘. If 𝑦 ∈ R3 is a force applied to point 𝑥𝑖,
and an equal but opposite force is applied to point 𝑥𝑗, then Γ𝑇

𝑘 𝑦 is the resulting generalized
force applied to the contacting system.

In turn, points in contact apply an equal and opposite force along their shared, unit-length
normal 𝑛𝑘 ∈ R3. In global coordinates this is equivalent to applying a force of magnitude
�̄�𝑘 ∈ R+ along a generalized normal

n𝑘 = Γ𝑇
𝑘𝑛𝑘 ∈ R3𝑛, (4.7)

to the system. The subspace of generalized normal directions

N = (n1...n|𝒞|) (4.8)

then forms a basis for contact forces. Concatenating the corresponding force magnitudes in
𝛼 = (�̄�1, ..., �̄�|𝒞|)

𝑇 , the total contact force applied in the system is then N𝛼.
Friction forces lie in the tangent plane orthogonal to the contact normal. At each contact

𝑘 we sample an orthogonal pair of unit length vectors from the tangent plane. The 3 × 2
matrix composed column-wise of these samples is given by 𝑇𝑘 so that a friction force, 𝑓𝑘 ∈ R3,
applied at a contact 𝑘, lies in the span of 𝑇𝑘 with 𝑓𝑘 = 𝑇𝑘𝛽𝑘, where each 𝛽𝑘 ∈ R2 gives the
frictional response coefficients at contact 𝑘.

The total friction force applied to the system at each contact 𝑘 must be equal and opposite
and is f𝑘 = Γ𝑇

𝑘𝑇𝑘𝛽𝑘. The generalized basis for a friction force at contact 𝑘 is then

T𝑘 = Γ𝑇
𝑘𝑇𝑘 ∈ R3𝑛×2. (4.9)

We build the corresponding subspace of generalized tangent directions,

T = (T1...T|𝒞|) (4.10)

and form the corresponding vector of frictional force coefficients as 𝛽 = (𝛽𝑇
1 , ..., 𝛽

𝑇
|𝒞|)

𝑇 . The
total friction force on the system is then T𝛽.

Contact and friction forces can be inexpensively modeled explicitly [Belytschko et al.,
2013] but this introduces instabilities and nonphysical oscillations on boundaries even at
small time step for stiffer materials Deuflhard et al. [2008]. Thus FEM state-of-the-art
generally turns to implicit time-integration for efficient contact force modeling.

Kane et al. [1999] proposed the now standard nonsmooth-Newmark method for contact
modeling. This is a fully implicit time-stepping model that couples frictional contact with
internal energies and forcing in each solve.

M𝛿𝑡+1 = b𝑡 + ℎ2

4
F(q𝑡+1)− ℎ2

4
D(q𝑡+1)v𝑡+1 + ℎ2

2
N𝛼 + ℎ2

2
T𝛽. (4.11)

Note that here, unlike internal forces, contact forces are evaluated solely at the time step
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endpoint to ensure dissipation. Next, to fully define the time stepper, consistency conditions
are required for contact and friction forces.

Enforcing the complementarity model for contact requires contact forces to balance along
boundaries

0 ≤ 𝛼 ⊥ N𝑇 𝛿𝑡+1 ≥ 0, (4.12)

Friction in turn is modeled with the Maximal Dissipation Principle, requiring friction
to maximize the rate of negative work done at each contact, −𝑓𝑇

𝑘 �̇�. The total dissipation
performed by friction is then∑︁

𝑘∈𝒞

(︀
−𝑓𝑇

𝑘 �̇�𝑘

)︀
= −

[︁∑︁
𝑘∈𝒞

𝑓𝑇
𝑘 Γ𝑘

]︁
q̇ = −𝛽𝑇T𝑇 q̇. (4.13)

Then, maximizing the Coulomb-constrained dissipation simultaneously at all contact points,
with the implicit Newmark discretization Pandolfi et al. [2002], gives us the final condition
for our numerical integration

min
𝛽
{𝛽𝑇T𝑇 ( 2

ℎ
𝛿𝑡+1 − v𝑡) : 𝜇𝑘�̄�𝑘 ≥ ‖𝛽𝑘‖, ∀𝑘 ∈ 𝒞}, (4.14)

where 𝜇𝑘 is the local friction coefficient at contact 𝑘.
Taken together stepping this implicit complementarity Newmark integrator with (4.6),

(4.11), (4.12), (4.14) and (4.5) provides predictive simulation at slower speeds of contact.
For higher speed contacts and impacts, the remaining challenge lies in stabilizing contact
stresses, velocities and displacements Deuflhard et al. [2008] to ensure that simulated objects’
bounces and rebounds consistently match with their real-world counterparts. In Section 4.4
we will address this issue with a new impact model for FE simulation. First, however, we
address our fundamental scaling problem: how can we gain accurate dynamic simulation
without being bottlenecked by systems too large to solve quickly per time step?

4.3 Dynamics-Aware Coarsening

We couple numerical coarsening with parameter acquisition. Our DAC method computes
numerical stiffness parameters for the nonlinearly elastic, Neohookean material model, and
damping parameters for the Rayleigh damping model so that, when applied to the coarsened
simulation mesh, the dynamic behavior of a high-resolution simulation is preserved.

Because the goal of DAC is to replicate the dynamic behavior of a high-resolution simu-
lation, we focus on creating a coarse mesh which captures both the large-scale deformation
modes, and the corresponding natural frequencies of the high-resolution mesh. We do this
in two stages. First, we produce a coarse hexahedral mesh that can replicate the large scale
deformation modes of our high-resolution mesh. Second, we compute material and damping
parameters that yield matching fundamental frequencies for each mode shape on this coarse
mesh.
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Figure 4-6: Dynamics-aware coarsening (DAC) coarsens meshes to capture deformation with
calibrated stiffness. We observe FE meshes capture accurate deformation modes up to a quite
coarse resolution. However, these same coarse meshes suffer from numerical stiffening (see
Figure 4-7). We design coarse mesh FE models by matching both significant deformation
modes (above) and their captured material response (see Figures 4-10 and 4-20) to obtain
efficient and predictive coarse-mesh FEM simulations of dynamics.

High Resolution Mesh Naive CoarseningStiffness Matching

Figure 4-7: Static Deformation Test. We apply an identical load to three meshes with the
same model geometry. With the same material parameters, a high-resolution mesh (left) is
effectively 2.5x softer than the corresponding coarse mesh (right). Applying our captured
numerical Young’s modulus to the coarse mesh (middle) regains the correct deformation of
the original, high-resolution mesh on the left.

98



4.3.1 Geometric Coarsening

DAC uses an iterative procedure to create the coarse mesh while maintaining mode shapes.
We initialize our mesh to a coarse hexahedral discretization of the starting geometry, q0,
and then subdivide recursively until we reach a convergent mesh resolution. We then solve
the generalized mass-PCA system

K(q0)q = 𝜆Mq (4.15)

for the dominant shape modes of the convergent system and then coarsen via bisection with
mass-PCA until we reach a maximally coarse mesh that matches the dominant four shape
modes to tolerance. We use a relative geometric difference of 5% (Hausdorff distance) as
our tolerance threshold. Typically this is a short validation step as even the coarsest meshes
generally satisfy this criteria (Figure 4-6).

4.3.2 Material Parameter Fitting

Our geometric coarsening ensures that our DACmesh captures significant deformation modes
of our design accurately. However, when simulated, these same coarse meshes suffer from
numerical stiffening – an increase in effective stiffness and damping as a consequence of
decreased mesh resolution; see Figure 4-7. This leads to unacceptably inaccurate simulated
trajectories no matter how we simulate this system. Regaining predictive stiffness and damp-
ing by refining the discretization would take us back to intractable mesh sizes; see Figure 4-1.
Rather than refine, we keep our coarse mesh (as we have already ensured that our geometry
is resolved there) and instead calibrate its frequency spectrum to directly match experiment.

To do this, we rescale our coarse model stiffness so that its fundamental frequency matches
an observed frequency. As we will see below, this simple analysis sufficiently recovers effective
stiffness and damping to regain a predictive nonlinear simulation with our coarse mesh.

From the geometric coarsening step above, we retain the numerical eigenvalues, 𝜆0
𝑖 , of

our coarse mesh with corresponding deformation modes 𝑚𝑖 approximated linearly by the
damped harmonic oscillator Shabana [2012]

�̈�𝑖 = −(𝑎 + 𝑏𝜆𝑖)�̇�𝑖 − 𝜆𝑖𝑚𝑖, (4.16)

or equivalently

𝑚𝑖(𝑡) =𝐴𝑖 exp(−𝑑𝑖𝑡) sin(2𝜋𝑓𝑖𝑡 + 𝜃𝑖),

𝑓𝑖 =
1

2𝜋

√︂
𝜆𝑖 − (

𝑎 + 𝑏𝜆𝑖

2
)2,

𝑑𝑖 =
1

2
(𝑎 + 𝑏𝜆𝑖),

(4.17)

where 𝑎 and 𝑏 are Rayleigh Damping parameters and 𝜆𝑖 is the 𝑖𝑡ℎ eigenvalue associated with
the 𝑖𝑡ℎ deformation mode.

We then 3D-print calibration rigs with tracker markings, see e.g., Figure 4-8, and capture
high-speed video (240 fps) of the rigs vibrating. We extract a tracked trajectory 𝑚𝑡 of the
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Figure 4-8: Top: tracking the oscillations of a 3D-printed calibration rig allows us to measure
mesh-dependent stiffness and damping parameters. Bottom: the resulting DAC-simulated
frames at corresponding times for visual comparison to the captured motion.

marker motion from the video capture and solve the inverse harmonics problem [Mandelsh-
tam and Taylor, 1997] to find the printed beam’s frequency, 𝑓𝑡, and damping, 𝑑𝑡, parameters.
Setting the tracked 𝑓𝑡 and 𝑑𝑡 in (4.17) and 𝑎 = 0, based on our observation of minimal ef-
fective mass-damping, simultaneously retrieves the captured target eigenvalue 𝜆𝑡 and the
unknown and unreported stiffness damping parameter 𝑏 required for dynamic simulation.

With our tracked 𝜆𝑡 in hand, our final step is to map the initial material Young’s modulus,
𝐸𝑚, that we use to compute 𝜆0

𝑖 (we set 𝐸𝑚 = 1 throughout) to a new, numerical modulus
value, 𝐸𝑛. We seek an 𝐸𝑛 that will match the numerical stiffness response of the simulated
coarse FE mesh to the captured material response. We do this with a simple argument of
fixed proportionality between the principle eigenvalues and the moduli by setting

𝐸𝑛 ←
𝜆𝑡

𝜆0
1

𝐸𝑚. (4.18)

As validation we confirm that our coarsened FE simulations, initialized to the starting cal-
ibration pose, with Young’s modulus set to 𝐸𝑛, and stiffness damping set to the measured
damping parameter, match both high-resolution simulation and the tracked calibration rig,
up to viscosity—which we so far find unnecessary to model; see Figure 4-20.

Note that, in our experiments, increasing the number of mode shapes which must fall
below our error threshold of 5% Hausdorff distance does not improve simulation accuracy.
Figure 4-10 shows a comparison of DAC meshes created using 4 and 10 modes for the error
threshold. The resulting simulations are indistinguishable from each other and both match
measured experimental data equally well.

In practice we observe that DAC captures object motions containing large contributions
from a number of modes. To understand why we see that DAC scaling corrects frequencies
of modes well beyond the first, so that, for example, for our plant and walker models, DAC
reduces average frequency error across the first 10 modes from 27.1% to 2.4%.

Figure 4-9 shows an example of DAC coarsening applied to plant and flamingo models.
With DAC we accelerate the simulation of the time varying deformation of our plant object
by 25X while achieving good approximation to the high-resolution simulation mesh; see
Figure 4-11. Here Figure 4-11 distinguishes between convergent FEM discretizations and
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Figure 4-9: Measured and simulated vibrations of the 3D-printed plant (digital material)
and 3D-printed flamingo (Rigur RGD450) models (magnify the plots for details of fits).

Figure 4-10: DAC coarsening comparison for increasing the number of fitted modes. Our
default setting requires less than 5% relative Hausdorff distance up to the 4𝑡ℎ mode and gives
a coarsened FE mesh with 𝑑𝑥 = 0.6𝑚𝑚. If we increase the number of modes for our DAC
fit to less than 5% relative Hausdorff for up to the 10𝑡ℎ mode shape, we instead obtain a
mesh with 𝑑𝑥 = 0.3𝑚𝑚. Note that the resultant simulations for these two DAC meshes are
indistinguishable (magnify the plot for detail of fit).
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Simulation Model dx(mm) Timing
avg/step(s)

Memory 
(G)

Elements

FEM Plant 0.100 1876.3 48.5 1,004.6K
FEM Plant 0.150 226.8 11.9 297.9K
DAC Plant 0.600 9.2 0.4 16.1K
FEM Jumper 0.150 — 379.7 5,450.0K
FEM Jumper 0.375 791.0 18.0 346.3K
DAC Jumper 1.500 10.4 0.3 5.4K

FEM Jumper Mesh 
dx = 0.375 mm

DAC Jumper Mesh 
dx = 1.500 mm

FEM Plant Mesh 
dx = 0.150 mm

DAC Plant Mesh 
dx = 0.600 mm

Figure 4-11: Statistics for our DAC simulations compared with two choices of accurate
FE: a convergent FE model, and a validated accurate FE model (validated as matching
experimental behavior and modal frequencies are within 5% of convergent values). For each
simulation we report the model used (plant and jumper models), the mesh element size,
the average wall-clock time spent per dynamic time step, memory usage, and the number
of elements in the simulated mesh. Timings were recorded on an Intel Xeon E5-2666 v3,
2.9Ghz with 4 CPU threads.

accurate FEM discretizations for meshes used in our examples. Convergent discretizations
are ones for which the spatial resolution is high enough so that the modal frequencies of
the mesh have converged to their final values (changing by less than 1% with respect to
previous subdivision). Accurate discretizations are ones for which the resolution of the FE
mesh is such that the modal frequencies are within 5% of convergent values. In this paper
all results are with respect to the coarser, accurate FE meshes. Even compared to these we
achieve speedups of up to 79X. We also note that, if measurement data is not available, DAC
calibration can be carried out using high-resolution simulation data.

4.4 Boundary Balancing Impact Model

With our DAC discretization in place, we will now derive a new, Boundary-Balancing Impact
(BBI) model for FE that gains us accurate prediction of impact-response for the 3D-printed
elastic materials we focus on in this work.
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Figure 4-12: Impact model testing with a 3D-printed jumper dropped onto the ground. We
show overlaid frames captured, left to right, from an experiment (left) and two corresponding
simulations (at ℎ = 10−4𝑠) that respectively apply DKE (middle) and BBI (right) impact
models. In experiment the fabricated jumper lands, bounces up and then rests upright
on its feet (left). However, simulation with the DKE model (middle) rebounds too high,
flips over and so incorrectly predicts that the jumper will fail by landing on its back after
collision (middle). With our BBI model (right), our simulation qualitatively predicts the
experimentally determined landing behavior for this design.

4.4.1 Complementarity Integration Revisited

The nonsmooth Newmark complementarity integrator we reviewed in Section 4.2 has several
well-known flaws Deuflhard et al. [2008] that we illustrate next. In Figure 4-13 right, we
drop a 3D-printed block from height of 3 cm onto a flat surface. As it is both stiff and highly
damped it lands without perceptible rebound. Yet, when we simulate the same drop of the
block with the Newmark complementarity integrator the block rebounds up to a height of
0.89 cm; see Figure 4-13 left. Errors on this scale are unacceptable in a fabrication design
process where they can make the difference between success and failure - see Figure 4-12.

What is going wrong in these examples? The Newmark discrete velocity update step
in (4.5) gives rise to an arbitrary, undesirable (and for elastic materials) generally incorrect
choice of restitution. Consider the impact of our material at contact with a normal n. Here
the complementarity constraints ensure that the new displacement 𝛿𝑡+1 along this normal
are zero so that n𝑇 𝛿𝑡+1 = 0. However, although this nicely satisfies position constraints,
upon substitution we see that n𝑇v𝑡+1 = −n𝑇v𝑡 so that Newmark gives an incorrect, fully
elastic (coefficient of restitution = 1) effective impact response. Yet the impact response for
elastica along an impact boundary should instead be inelastic with the normal velocity on
impact along the elastic boundary dissipated completely Doyen et al. [2011]. In turn this
results in much too large rebounds upon impact as we observe in Figures 4-12 and 4-13.
A related error for complementarity integrators manifests in commonly observed spurious
oscillations in positions and tractions along contact boundaries. These oscillations are the
combined result of instabilities in contact stresses, velocities and displacements. Notably,
both of these issues arise with arbitrary impact geometries, not just in the planar example
discussed here.
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Figure 4-13: Impact validation test. A 3D-printed, stiff elastic block is dropped face-first on
the ground. Left-to-right we compare the simulated results of three FE impact models - com-
plementarity, DKE and our BBI model - with experimental results. We show configuration,
at start, impact, and post impact maximum rebound height with details on stress distribu-
tion at impact, apex height reached, and (inset) the velocity profile for each simulation. As
the effective restitution of elastica varies with angle of impact, see below in Figure 4-14 for
a comparable oblique drop experiment.

4.4.2 DKE Contact Stabilization

To address these widely reported problems, Deuflhard et al. [2008] introduced a contact
stabilization step to filter contact response with projection. They observe that contact
forces acting on the material boundary should be balanced and so proposed a now-standard
FEM contact-stabilization filter (DKE) that applies an L2-projection that zeroes out normal
displacements along the boundary of materials at contact interfaces.

This projection on displacement is performed at the end of each time step, after the
position update (4.11) has been solved. This ensures a correct inelastic response at the con-
tact boundary and is effective in producing desirably stabilized contact tractions Deuflhard
et al. [2008], Krause and Walloth [2012]. Nevertheless, when we compare DKE against ex-
periment (Figures 4-12, 4-13, and 4-15), we see that the DKE projection likewise introduces
unacceptably large rebound errors when compared with real-world results.
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Figure 4-14: Comparison of our BBI model to experiment for a 3D-printed cube dropped
from an oblique initial orientation.

4.4.3 Boundary Balancing Impact

To better understand why DKE projection does such a poor job of resolving impacts in our
elastic materials, let us consider again our simple dropped block example in Figure 4-13.
We observe that by projecting out just the normal component of displacement along the
boundary the DKE method artificially concentrates high stresses along the elements just
inside the boundary. This can be seen in the impact row of Figure 4-13. These concentrated
stresses effectively load the near-boundary layers which then spring back, introducing a much
too large response as seen in the final row of Figure 4-13. The problem here is that the L2-
projection applied is material-oblivious and yet material properties clearly mediate impact
response. Compliance distributes contact stresses quickly through an elastic material while,
in damped materials, internal friction rapidly attenuates the response.

With these observations in mind we define a new Boundary Balancing Impact (BBI)
model that can effectively impose boundary force-balance in a material-aware fashion. Start-
ing with our base time integrator we define a compliant, discretization- and material-aware
metric for projection below. The resulting stabilizing impact model better duplicates results
in our design applications and experiments. Upon completing each time step from 𝑡 − 1 to
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𝑡 we replace the Newmark update in (4.5) with a compliant boundary projection update

c = 2𝛿𝑡+1 − ℎv𝑡,

A = M +
ℎ2

4
K(q𝑡+1) +

ℎ

2
D(q𝑡+1),

d* = argmin
d

{︀1

2
‖d− c‖2A : N𝑇d ≥ 0

}︀
,

v𝑡+1 =
1

ℎ
d*,

q𝑡+1 = q𝑡 + 𝛿𝑡+1.

(4.19)

This new impact model projects the explicit predicted velocity displacement, c, to the
nearest set satisfying force balance on the boundary with respect to the local approximation
of both material stiffness and damping. We find that this effectively distributes the contact-
stabilized displacement across the material from the boundary layers. The effect of impact is
communicated to the material interior while still ensuring that impacts are correctly inelastic
along the active contact boundary. This leads to accurate predictions of real-world bouncing
and rebounds. In our simple drop test we see in the impact row of Figure 4-13 that, at
impact, response for this damped material has been correctly dissipated and the resulting
normal displacement closely matches real world results in the apex row of Figure 4-13.

As we consider a range of impact angles, as well as impact with more complex geome-
tries, multi-material 3D-prints and self contact we see that BBI still consistently and more
accurately captures impact-response behavior. See Figures 4-12-4-16. These examples
demonstrate the range and complexity of responses obtained by BBI coupling impact to stiff
elastic materials with large deformations as well as objects composed of multiple materials
undergoing both self-contact and stiction.

4.5 Results and Discussion

To test our proposed algorithms we compare simulated results generated by DAC and BBI
with real-world results experimentally obtained from a range of compliant 3D-printed jump-
ing and throwing mechanisms. For each mechanism we begin with a dynamic, time-varying
goal, e.g., for our jump-over goal: “when pressed and released, jump over a given wall and
land upright on the far side” (see Figure 4-24).

Simulations suitable for fabrication design must accurately predict both when a design
fails and when it succeeds, thus we require real world examples of each. Below we outline our
approach to creating these mechanism examples for testing, discuss our identification results,
and review our implementation. We then detail our experiments comparing DAC and BBI’s
simulated predictions for each design task below in Section 4.5.4 and validate outcomes of
the simulations against repeated user trials in a study discussed in Section 4.5.5.
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Figure 4-15: A drop test of the 3D-printed plant model (digital material). We compare
simulated results from Complementarity, DKE and our BBI model with experiment. BBI
solely reproduces the observed impact behavior.
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Figure 4-16: Drop tests of a multi-material 3D-printed flamingo model (Rigur and TangoB-
lackPlus) from a variety of orientations. While effective restitution of elastica varies with
angle of impact, in all cases our BBI simulations agree with experiment.

4.5.1 Creating Mechanism Examples

We focus our tests here on jumping-related mechanisms. The analysis and design of jumping
mechanisms is an increasingly active [Bergbreiter, 2008, Bergbreiter and Pister, 2007, Bing-
ham et al., 2014, Churaman et al., 2011, Jung et al., 2014, Koh et al., 2013, 2015, Li et al.,
2015, Vella, 2015], challenging and practical domain that incorporates high-speed transient
dynamics of stiff elastic materials undergoing impact and so is an ideal test case for DAC
and BBI. Research in jumping mechanisms has focused on efficient energy transfer into jump
height, see e.g., Noh et al. [2012] with aligned research on a range of approaches for con-
trolled jumping [Bartlett et al., 2015, Li et al., 2015, Loepfe et al., 2015]. In all cases, to
our knowledge, mechanisms have been developed via costly, manual iterations of hands-on
experiment, re-design, fabrication and one-off simulations [Bartlett et al., 2015, Cho et al.,
2009], while even the stable landing of dynamic jumps has remained highly challenging [Jung
et al., 2015].

For each of our jumping and throwing goals (see Section 4.5.4 below) we first attempted
to manually create successful designs. We obtained designs that came close to ideal, but,
consistent with the above cited literature, we were unable to hand tune these mechanisms to
fully satisfy design goals. E.g., for the jump-over goal we found a design that often cleared
the wall but did not land upright; see Figure 4-24, left. These mechanisms are our initial
designs.

Presuming our initial designs are potentially close to successful designs, we perform local
optimization over a pair of key design parameters, here generally length and height (see
Figure 4-18), to seek a nearby solution. For each mechanism we pose its design goal as an
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objective and a set of constraints; these functions are detailed in Figure 4-17. To evaluate
these objectives and constraints we apply DAC and BBI simulation at each design sample
queried by the optimizer. Statistics for the numbers of simulation samples, iterations and
timings for performing these local optimizations are summarized in Figure 4-17.

For all these examples we found that a relatively small number of iterations were needed to
find successful designs; this suggests that our initial, hand-tuned designs are close to solutions
in a basin. However, practical design optimization would demand a global optimization
strategy to resolve non-convexity. In such general cases initial designs can be expected to
start far from optima while the search space is often large - local optimization would be
insufficient.

The mechanisms found by this process are our final designs. We compare the trajectories
and outcomes predicted by BBI and DAC against the real world initial and final mechanisms:
validation results are detailed for each example below in Section 4.5.4, while our user study
results are presented in Section 4.5.5. The uncut video footage of all experiments are available
online Chen et al. [2017].

Design Task Objectives Constraints Iterations Simulations Time(m)

Flipper 𝜃c2 — 5 44 242

Catapult ||xc - xtarget|| — 5 39 350

Jump Onto 𝜃c2
xwall-xc≤0,   
ywall-yc≤0 5 47 376

Jump Over 𝜃c2
xwall-xc≤0,  

ywall-yhighest≤0 7 56 415

Figure 4-17: Design optimization statistics. For each dynamic design optimization we report
the design task objectives and constraints applied, the number of optimization iterations
performed, the total number of simulations performed for each design and finally the total
wall-clock time (minutes) spent in design optimization. Sampled frames for each simulated
and corresponding fabricated mechanism designs are given in Figures 4-21–4-25 and design
parameters optimized over are summarized in Figure 4-18. Here 𝜃𝑐 and x𝑐 represent jumper
angle of rotation and catapult projectile center-of-mass position at landing while xtarget is
the desired projectile target.

length

height

length

height

Flipper Jumper Catapult

length

height

Figure 4-18: Design geometries and parameters.
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4.5.2 Implementation

All results are computed on an Amazon EC2 compute-optimized instance with 4 CPU threads
(Intel Xeon E5-2666 v3, 2.9Ghz), while all mechanisms were printed on a Objet500. While
DAC and BBI give us orders of magnitude speedups for predictive simulation of deforming
dynamics, our experiments (see Supplemental) show that dynamic FE simulation is unneces-
sary when modeling initial loading as well as during some portions of free-flight. With careful
book-keeping and mapping of state simpler and more efficient models can be employed during
these phases to gain further speedup. When initially loading mechanisms, e.g., when press-
ing down a jumper in Figure 4-5, we observe that the process is effectively quasistatic and so
simulate with an efficient quasistatic solver detailed in our Supplemental. Upon completion
of the initial loading we map state to our full dynamic solver with DAC and BBI. We also
track the time-varying elastic potential energy stored in simulated compliant objects. When
damping causes this internal potential to fall to zero, e.g., during portions of free-flight, we
switch from our full DAC discretization to a rigid body discretization. We use DMV [Moser
and Veselov, 1991], an efficient energy–momentum preserving rigid-body integrator, to then
time step the system in SE(3) coordinates until the next collision is reached, at which point
we map rigid-body state back to the DAC model to capture the new deformation dynamics
at impact. See our Supplemental for details on this process.

4.5.3 Identification

Material (model) Reported Identified Numerical Damping

Rigur, vertical (jumper) 1.9 ± 0.2 1.66 0.65 1.64E-04

Rigur, horizontal (jumper) 1.9 ± 0.2 2.06 0.81 1.40E-04

DM4825, horizontal (plant) 1.2 ± 0.3 1.57 0.72 2.55E-04

TangoBlackPlus (jumper) (2±1)E-04 6.32E-04 4.625E-04 9.10E-02

Young’s Modulus (GPa)

Figure 4-19: Material parameters identified by our fine and coarse matching against calibra-
tion. Left to right we list previously reported Young’s moduli for vertically and horizontally
oriented prints compared with our identified moduli. We then report the matched numerical
moduli we use for each for our DAC models and finally, list previously unreported damping
parameters we identify and use in our simulations.

We compute each DAC model’s coarse mesh resolution and material parameters using
the measurement procedure described above in Section 4.3; see also Figure 4-20. We model
heterogeneous materials by computing numerical Young’s moduli for soft (TangoBlackPlus)
and rigid (Rigur RGD450) materials and coarsening as much as possible while retaining a
single material per element. A major benefit of our coarsening scheme is that it identifies
both actual and numerical moduli and damping parameters of real-world materials. Figure
4-19 details these parameters. The damping parameters we present here have not, to our
knowledge, been previously identified in the literature. On the other hand, in our experi-
ments and simulations we find that the previously identified Poisson’s ratio for our printed
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Figure 4-20: Measured and simulated vibrations of a 3D-printed jumper (Rigur) model
(magnify the plot for details of fit).

materials Major et al. [2011], at 0.45, is effective, and keep it fixed at this value for all
examples reported here.

4.5.4 Experiments

In this section we detail the individual design examples. We visually compare the trajectory
behavior of both the real world fabricated initial and final mechanisms with corresponding
DAC and BBI simulation results at the same parameters. In the following section we then
discuss the results of the user study we perform to evaluate the results of initial and final
fabricated mechanisms over repeated user trials comparing against DAC and BBI predicted
simulation outcomes.

Figure 4-21: A comparison of experimental (bottom) and DAC/BBI simulated (top) results
for initial (left) and final (right) designs of a flipping mechanism.

Flipper Our first design example is a simple forward flipping jumper. We begin with the
geometry in Figure 4-21 left, load the jumping model by pressing down and then releasing.
The design goal is a shape that, upon release, jumps forward into the air, flips and then lands
stably on its feet, see e.g., Figure 4-5. See Figure 4-21 comparing simulated and experimental
trajectories for both initial and final design samples.
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Figure 4-22: A comparison of experimental (bottom) and DAC/BBI simulated (top) results
for initial (left) and final (right) designs of the catapult mechanism.

Catapult Our next design example is a catapult mechanism. By adding a firing basket
to the above flipper geometry, fixing the mechanism base to the ground, and then adding a
projectile cube in the basket to the design model we obtain a catapult for throwing metal
cubes at targets. This system requires modeling the sliding contact and impact between the
cube and basket. The design goal here is to find a catapult geometry that, under loading
produces the correct combination of launch position and release velocity for the catapult
arm and block so that the block hits a predetermined target. See Figure 4-22 comparing
simulated and experimental trajectories for both initial and final design samples.

Initial Final

Figure 4-23: A comparison of experimental (bottom) and DAC/BBI simulated (top) results
for initial (left) and final (right) designs for a jumper mechanism to jump onto a platform
and land upright.

Jumping onto obstacles Here we consider a design example where the goal is to find a
geometry for a 3D-printed jumper mechanism that, upon release, jumps forward and upwards
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into the air, flips (possibly multiple times) and then lands stably upon its feet on top of a
flat obstacle, see e.g., Figure 4-23. See Figure 4-23 comparing simulated and experimental
trajectories for both initial and final design samples.

Initial Final

Figure 4-24: A comparison of experimental (bottom) and DAC/BBI simulated (top) results
for initial (left) and final (right) designs for a jumper mechanism to jump over a wall of
specified height and land upright.

Jumping over obstacles In this example, the goal is to find a geometry for a 3D-printed
mechanism that, upon release, jumps forward and upwards high enough into the air to clear
a wall, flip (possibly multiple times) over it and then land stably on the other side. See
Figure 4-24 comparing simulated and experimental trajectories for both initial and final
design samples.

Flipper variations We additionally evaluate six further design example comparisons be-
tween fabricated mechanisms and DAC and BBI simulated trajectories over a range of flipper
mechanism variations. In Figure 4-25 we compare initial and final designs created by three
variations away form the base initial (“normal”) flipper mechanism design.

4.5.5 User Study Results

Here we present the results of a user study evaluating the goal outcomes of initial and final
fabricated mechanisms over repeated user trials as compared against outcomes predicted by
DAC and BBI.

We asked five users to perform twenty attempts each with both the initial and final
versions of each of the above mechanisms; the flipper, catapult, jump onto and jump over. For
the flipper, jump onto and jump over mechanisms we count the number of successful attempts
for each user; see Figure 4-27. Here we define goal success as satisfying the objectives and
constraints posed by each design as described above; e.g. flipping, clearing all obstacles,
and landing feet down on the desired area (Figures 4-21, 4-23 and 4-24). In Figure 4-27
we summarize the total number of successes for each user per optimized and unoptimized
design as well as the aggregate totals. For the optimized and unoptimized catapult designs
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Figure 4-25: A comparison of experimental (bottom) and DAC/BBI simulated (top) results
for six more design samples: initial (left) and final (right) designs of variations on the flipping
mechanism (“Normal”).

we report the mean distance to the target in millimeters and the standard deviation for each
user (Figure 4-26).

In order to consistently apply the loading force to each mechanism, users are instructed
to fully load each mechanisms by pressing the top until it makes contact with the bottom.
We ask users to apply the loading force with a 3D printed bar at a designated loading point
marked on each mechanism with permanent marker. The user then deformed the mechanism
to the loaded state and released the load with a sliding motion, similar to the launching
motion in Tiddlywinks. This ensures that contact break between the stick and the mechanism
is close-to instantaneous and consistent. The same criteria are used in simulation to obtain
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Figure 4-26: Statistics summarizing our user study comparing results from trials with our
initial and final catapult mechanisms. We report the distance to target per trial. The final
catapult design dramatically outperforms its initial counterpart, consistently, across all users,
coming close to matching DAC/BBI predicted outcomes.

Figure 4-27: Statistics summarizing our user studies comparing results from trials (left to
right) with our our initial and final flipper, jump-onto, and jump-over mechanisms. In orange
bars we report the number of successes per user, while in grey we report total successes per
mechanism across all trials. Note that initial designs for both the jump-onto and jump-
over have no successes at all, while, across all three mechanisms, final designs dramatically
outperform their initial counterparts. This success is consistent across all users - closely
matching DAC/BBI predicted outcomes.

comparable loading. The Objet500 we employ in all our fabrication examples works at 85
microns precision while our design parameter changes are on the order of millimeters and are
thus be reliably manufactured. Additionally to further minimize variability in experimental
conditions we use the same printer for all examples and always print in the top left area of
the build tray. We orient models consistently and perform experiments within two weeks of
printing to avoid long-term material degradation - an interesting topic for future modeling
and design research.

Throughout the study, mechanism goal outcomes consistently matched those predicted by
their corresponding DAC/BBI simulations. Final, optimized, mechanisms were much more
reliable than their initial counterparts - under simulation these were successful. In terms of
jumping (flipping, over, onto) tasks final designs completed more than 85% of their attempts
for every task - close to matching DAC/BBI predicted success. while the initial designs
successfully completed the simplest flipping task in 3% of all attempts (Figure 4-27) and had
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zero successes for the jump-onto and jump-over tasks - matching DAC/BBI predicted failure.
This large difference validates that designed mechanism successes are quite reliably modeled
by DAC/BBI. For instance, our catapult design achieves a 10× reduction in mean error with
respect to target distance for all users. Note that here there is a small increase in standard
deviation due to the fact that our optimized design of the catapult necessarily throws the
cube much further, amplifying any variation errors in initial targeting (Figure 4-26). For
supporting evidence of each mechanism’s experimental behavior please see our supplemental
materials which include uncut videos Chen et al. [2017] of all user studies.
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Chapter 5

Conclusion

We presented a class of multiscale methods for efficient FEM simulation of elastic materials.
Our goal is to use simulation and computational design algorithms to improve real-world
designs. To this end, we developed simulation tools for both linear and non-linear elastic
materials. DDFEM simulates non-linear statics with two-orders of magnitude speed up
while capturing the macroscopic behavior much more accurately than the baseline methods.
DAC achieved a 79 times speed up of dynamic simulation while matching the trajectories
of simulation and physical measurement. Our simulation algorithms are efficient enough
to be used in iterative design algorithms and also predictive enough to improve real-world
designs. The accuracy and efficiency of our methods have been demonstrated by designing
and fabricating functional 3D prints that meet specified static and dynamic deformation
properties. Our two-scale topology optimization algorithm have been shown to optimize
designs with 1 trillion voxel on a single computer. DAC is the first algorithm to optimize
physical elastic dynamic mechanisms that undergo loading, frictional contact and high-speed
impact.

Traditionally, engineers improve the accuracy of FEM simulation by adaptively refining
the mesh until some convergence test is satisfied. The elements must be small enough to
capture the geometric and material variations. Moreover, to combat numerical stiffening,
the element sizes must be a fraction of the geometric feature sizes. Because many small ele-
ments are needed to represent a detailed design, accurate simulation can take from minutes
to hours on a single computer. Iterative design processes often requires tens or hundreds of
simulations, making it impractical to use accurate simulation in the design loop. Recently,
researchers tried to take a different route and proposed to correct the material models in-
stead of refining the coarse elements. Homogenization and numerical coarsening methods
are examples of this strategy where they use different rules to compute new material models
for the coarse elements. Our coarsening approach generalizes the previous methods to han-
dle non-linear elastic materials and dynamic simulations. The energy function of a coarse
element is compactly represented as a weighted sum of basis terms. Our simulation relies
on a precomputation stage that constructs a database of material combinations and their
corresponding coarse energy function parameters. At runtime, our algorithm coarsens the
high resolution mesh and then quickly finds the proper material parameters for each coarse
element. Coarsening reduces the problem size to only a fraction of the original size. The re-
duction in problem size leads to dramatic speed improvements. To account for the numerical
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error caused by insufficient number of degrees of freedom, we simulate the coarse elements
using precomputed material properties.

To apply our simulation to computational design algorithms, we developed a set of tools
for the intermediate steps. The level set representation of the material property gamut
is one such example. It enables efficient sampling and expansion of the material property
gamut. With the gamut of 3D cubic-symmetric microstructures, we performed more analysis
to identify similarities between structures with extremal properties. This study lead to
the discovery of 5 families of auxetic microstructures. The level set gamut has also been
used in our two-scale topology optimization algorithm to constrain the material parameters
at each cell. Our algorithm can optimize much more complex models since each cell now
contains material parameters that can be mapped to precomputed microstructures. Another
tool developed in the work is the boundary-balancing impact (BBI) model. It corrects the
overly energetic rebound behavior of elastic objects undergoing inelastic impact. This makes
the simulation algorithm to be predictive enough to produce the same qualitative landing
behavior for the jumping mechanisms.

Our simulation algorithms are used by computational design tools to generate elastic
objects satisfying design goals such as using the minimum amount of material and achieving
target deformed shapes. In addition to software validation, our simulation is extensively
validated by physical experiments using fabricated objects. For static objects, we validated
their Young’s modulus and Poisson’s ratio using compression tests. The fabricated compliant
mechanisms also deform to target shapes. For dynamic mechanisms, our simulation replicates
the behavior of hand-tuned and optimized jumping mechanisms. The landing poses and
rebound are accurately predicted. The average behavior across many trials by different
users also agrees with our simulation prediction. Our experiments points the way forward
for our simulations to be extended and tested for more complex deformable and dynamic
systems.

5.1 Limitations and Future Work

Our work is a first step towards efficient computational design of physical objects. There
are many potential future directions for improvements, experiments and applications.

Generalize material models Our material model is similar to traditional material mod-
els. It works with deformation gradients sampled at quadrature points. However, in general,
the elastic energy can be any function of the vertex positions that respects conservation laws.
One can use a much broader class of functions such as a neural network that map from a
vector of vertex displacements to an energy value. A more general function can capture more
accurately the behavior of higher order deformations such as bending and twisting.

Design multiple physical phenomena Our experiments focused on elastic properties.
Engineering design problems cover a much wider range of physical phenomena: structures
with zero thermal expansion for space applications, efficient antenna designs from simulation
of electric-magnetic field, tougher composite materials by mixing soft and stiff materials and
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so on. Using similar coarsening techniques to speed up simulation and design of other
physical properties remains a promising direction for exploration.

Incorporate other numerical Techniques Our coarsening method and other numerical
methods for speed improvements are not mutually exclusive. Since our coarsened discretiza-
tion uses the same hexahedron elements as the high-resolution elements, we can combine
our method with many types of techniques. For example, our current implementation uses
a GPU geometric multigrid method to greatly improve the simulation speed compared to a
direct linear solver. For future work, we can also experiment with adaptive meshing to use
even coarser elements at locations where less details are required. On the other hand, we can
learn new material models for higher order elements when more details are required such as
with bending and buckling.

Handle high frequency vibration Our work focused on modeling the macroscopic be-
havior of objects such as the overall deformation and trajectories. Our assumption is that
only the low frequency vibrations have sufficient amplitude to influence the macroscopic tra-
jectories. High frequency vibration such as sound are unlikely to be captured accurately out
of the box with our current method. To improve the simulation accuracy of such effects,
one can embed additional material information such as sound radiation models [Schweickart
et al., 2017] in the coarse elements.

Apply non-convex optimization For proof of concept, we only experimented with well-
tested optimization algorithms such as topology optimization. For dynamic problems, we
applied gradient-based method to improve the design towards a local minimum. We envi-
sion future applications such as robot design to require much more sophisticated optimization
algorithms that samples and tweaks many types of design parameters such as control pa-
rameters, trajectory planning, geometry and material parameters etc. These problems often
have many bad local minima, requiring a systemetic sampling of different basins of attrac-
tion. Such optimization algorithms would benefit even more from an efficient simulation due
to a much larger design space to explore.

119



120



Appendix A

Code for Using Reduced Templates

Here we include the Matlab code for generating microstructures given templates and reduced
parameters defined in Section 3.3.

1 %\param rparam row vecto r o f 2 reduced parameters in the range
[ −1 ,1 ] .

2 %\param fami ly i n t e g e r fami ly index
3 %\param re s i n t e g e r o f 3D gr id r e s o l u t i o n
4 %e . g . s t = struct_template ( [ 0 . 1 0 . 2 ] , 1 , 64) ;
5 f unc t i on s t = struct_template ( rparam , family , r e s )
6 s t = ze ro s ( res , res , r e s ) ;
7 %f u l l parameter
8 %assume a param . txt inc luded in the same d i r e c t o r y .
9 [ params , withCap]= loadParams ( ’ param . txt ’ ) ;

10 s t a r t I dx = ( family −1) *5 ;
11 param = params{ s t a r t I dx + 1} ;
12 f o r j = 1 : s i z e ( rparam , 2 )
13 r = rparam ( j ) ;
14 i f ( r >0)
15 param = (1− r )*param + r*params{ s t a r t I dx+2* j } ;
16 e l s e
17 param = (1+r )*param − r*params{ s t a r t I dx+2* j +1};
18 end
19 end
20 nParam = s i z e (param , 2 ) ;
21 paramPerBeam=9;
22 nBeam = nParam/paramPerBeam ;
23 f o r i = 1 :nBeam
24 beamParam = [ param(1+6*( i −1) : 6* i ) param(nBeam*6+1+( i −1)*3

: nBeam*6+ i *3) ] ;
25 s t = drawCuboid ( st , beamParam , withCap ( fami ly ) ) ;
26 end
27 %en fo r c e cubic symmetry
28 %can uncomment to preview a mirrored s t r u c tu r e .
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29 %st = mirrorCubicStructure ( s t ) ;
30 end
31

32 %\param param parameters f o r a s i n g l e cuboid . 6 coo rd ina t e s
f o l l owed

33 %cross−s e c t i o n s i z e and o r i e n t a t i o n .
34 f unc t i on o = drawCuboid ( arr , param , withCap )
35 v0 = param ( 1 : 3 ) ’ ;
36 v1 = param ( 4 : 6 ) ’ ;
37 r0= param (7) ;
38 r1 = param (8) ;
39 theta = param (9) ;
40 x = v1−v0 ;
41 l en = norm(x ) ;
42 o = ar r ;
43 i f ( l en < 1e−10)
44 r e turn ;
45 end
46 g r i dS i z e = s i z e ( a r r ) ;
47 x = (1 . 0 / l en ) * x ;
48 %de f au l t y ax i s .
49 y= [ 0 , 1 , 0 ] ’ ;
50 i f ( abs (x (2 ) ) > 0 .9 )
51 y = [1 0 0 ] ’ ;
52 end
53 z = c r o s s (x , y ) ;
54 z=(1/norm( z ) )*z ;
55 y = c r o s s ( z , x ) ;
56 R = vrrotvec2mat ( [ x ; theta ] ) ;
57 y = R*y ;
58 z = R*z ;
59

60 r = sq r t ( r0^2 + r1 ^2) ;
61 r_avg = 0 .5 * ( r0 + r1 ) ;
62 r_min = min ( r0+r1 * 0 . 05 , r0 * 0 .05 + r1 ) ;
63

64 %bounding box o f the cuboid .
65 f l=ze ro s (3 , 1 ) ;
66 fu=ze ro s (3 , 1 ) ;
67

68 i l=ze ro s (3 , 1 ) ;
69 iu=ze ro s (3 , 1 ) ;
70 f o r i = 1 :3
71 f l ( i ) = min ( v0 ( i ) , v1 ( i ) ) − r ;
72 f l ( i ) = max( 0 . 0 , f l ( i ) ) ;
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73 i l ( i ) = f l o o r ( f l ( i ) * g r i dS i z e ( i ) + 0 . 5 ) ;
74 fu ( i ) = max( v0 ( i ) , v1 ( i ) ) + r ;
75 fu ( i ) = min ( 1 . 0 , fu ( i ) ) ;
76 iu ( i ) = f l o o r ( fu ( i ) * g r i dS i z e ( i ) + 0 . 5 ) ;
77 end
78

79 f o r i = i l ( 1 ) : iu (1 )+1
80 f o r j = i l (2 ) : iu (2 )+1
81 f o r k = i l (3 ) : iu (3 )+1
82 i f ~inbound ( i , j , k , g r i d S i z e )
83 cont inue ;
84 end
85 coord=[( i +0.5) / g r i dS i z e (1 ) ; ( j +0.5) / g r i dS i z e (2 ) ; ( k+0.5) /

g r i dS i z e (3 ) ] ;
86 t = 0 ;
87 [ d i s t , t ]= ptLineDist ( coord , v0 , v1 ) ;
88 di sp = coord − v0 ;
89 ycoord = abs ( dot ( disp , y ) ) ;
90 zcoord = abs ( dot ( disp , z ) ) ;
91 i f ( ( ( t >= 0 && t <= 1) | | ( d i s t <= r_min && withCap ) )&&

ycoord <= r0 && zcoord <= r1 )
92 %1−based index f o r matlab
93 ar r ( i +1, j +1,k+1) = 1 ;
94 end
95 end
96 end
97 end
98 o = ar r ;
99 end

100

101 %check i f zero−based index with in g r i dS i z e
102 f unc t i on r e t = inbound ( i , j , k , s )
103 r e t = ( i>=0 && i<s (1) && j>=0 && j<s (2 ) && k>=0 && k<s (3) ) ;
104 end
105

106 f unc t i on [ d i s t , t ] = ptLineDist ( pt , x0 , x1 )
107 v0 = pt − x0 ;
108 d i r = ( x1 − x0 ) ;
109 l en = norm( d i r ) ;
110 d i r = (1 . 0 / l en )* d i r ;
111 %component o f v0 p a r a l l e l to the l i n e segment .
112 t = v0 ’* d i r ;
113 a = t * d i r ;
114 t = t / l en ;
115 b = v0 − a ;
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116 i f ( t < 0)
117 d i s t = norm( v0 ) ;
118 e l s e i f ( t > 1)
119 d i s t = norm( pt − x1 ) ;
120 e l s e
121 d i s t = norm(b) ;
122 end
123 end
124

125 %\ return param c e l l array o f row vec to r s o f parameters .
126 f unc t i on [ param , has_cap ] = loadParams ( f i l ename )
127 IN = fopen ( f i l ename ) ;
128 nRows = f s c a n f ( IN , ’%d ’ ,1 ) ;
129 param = c e l l (nRows , 1 ) ;
130 nTemplate = nRows/5 ;
131 has_cap=f s c a n f ( IN , ’%d ’ , nTemplate ) ;
132 f o r i = 1 : nRows
133 nCol = f s c a n f ( IN , ’%d ’ ,1 ) ;
134 ar r = f s c a n f ( IN , ’%f ’ , [ 1 nCol ] ) ;
135 param{ i } = ar r ;
136 end
137 f c l o s e ( IN) ;
138 end

The following function mirrors a microstructure to conform to cubic symmetry.

1 f unc t i on s t = mirrorCubicStructure ( st_in )
2 s t = st_in ;
3 g r i dS i z e = s i z e ( st_in ) ;
4 f o r i = 0 : g r i d S i z e (1 )−1
5 f o r j = 0 : g r i dS i z e (2 )−1
6 f o r k = 0 : g r i dS i z e (3 )−1
7 s i = i ;
8 s j = j ;
9 sk = k ;

10 tmp=0;
11 i f s i >= f l o o r ( g r i dS i z e (1 ) / 2)
12 s i = g r i dS i z e (1 ) − i − 1 ;
13 end
14 i f s j >= f l o o r ( g r i dS i z e (2 ) /2)
15 s j = g r i dS i z e (2 ) − j − 1 ;
16 end
17 i f ( sk >= f l o o r ( g r i dS i z e (3 ) /2) )
18 sk = g r i dS i z e (3 ) − k − 1 ;
19 end
20 i f ( s i < s j )
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21 tmp = s i ;
22 s i = s j ;
23 s j = tmp ;
24 end
25 i f ( s i < sk )
26 tmp = sk ;
27 sk = s i ;
28 s i = tmp ;
29 end
30 i f ( s j < sk )
31 tmp = sk ;
32 sk = s j ;
33 s j = tmp ;
34 end
35 s t ( i +1, j +1,k+1) = st_in ( s i +1, s j +1, sk+1) ;
36 end
37 end
38 end
39 end

We also include an example input file containing template parameters for Template 5.
The complete microstructure database, templates and reduced parameters are available on-
line [Chen, 2017].
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Appendix B

Implementation and Additional

Experiments for Dynamics

B.1 Dynamic Contact-Impact Solver

Implicit time stepping method At each time step our implicit contact method must
jointly satisfy the discrete equations of motion

M𝛿𝑡+1 − b𝑡 − ℎ2

4
F(q𝑡+1) + ℎ2

4
D(q𝑡+1)v𝑡+1

− ℎ2

2
N𝛼− ℎ2

2
T𝛽 = 0,

(B.1)

updates

b𝑡 = ℎMv𝑡 + ℎ2

4
F(q𝑡)− ℎ2

4
D(q𝑡)v𝑡,

q𝑡+1 = q𝑡 + 𝛿𝑡+1,
(B.2)

contact conditions1

0 ≤ 𝛼 ⊥ N𝑇 𝛿𝑡+1 ≥ 0, (B.3)

variational maximal dissipation conditions

min
𝛽
{𝛽𝑇T𝑇 ( 2

ℎ
𝛿𝑡+1 − v𝑡) : 𝜇𝑘�̄�𝑘 ≥ ‖𝛽𝑘‖, ∀𝑘 ∈ 𝒞}, (B.4)

1x ⊥ y is the complementarity condition x𝑖y𝑖 = 0, ∀𝑖.
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and the impact projection

c = 2𝛿𝑡+1 − ℎv𝑡,

A = M +
ℎ2

4
K(q𝑡+1) +

ℎ

2
D(q𝑡+1),

d* = argmin
d

{︀
‖d− c‖2A : N𝑇d ≥ 0

}︀
,

v𝑡+1 =
1

ℎ
d*,

(B.5)

to convergence with an iterative solver.

Modified Newton-Raphson with frictional contact To construct our solver we first
consider time-stepping without contact forces. At each time step we seek a displacement
update 𝛿𝑡+1 satisfying

f(𝛿𝑡+1) = M𝛿𝑡+1 − b𝑡 − ℎ2

4
F(q𝑡+1) + ℎ2

4
D(q𝑡+1)v𝑡+1 = 0, (B.6)

with

q𝑡+1 = q𝑡 + 𝛿𝑡+1,

v𝑡+1 = 2
ℎ
𝛿𝑡+1 − v𝑡.

(B.7)

Ignoring 𝜕D
𝜕q

we set

H(𝛿) = M +
ℎ2

4
K(q𝑡 + 𝛿) +

ℎ

2
D(q𝑡 + 𝛿). (B.8)

and have ∇f ≃ H. In the following we will reserve superscripting with indexing 𝑡 for
time step increments and superscripting with indexing 𝑖 for iteration increments. Modified
Newton-Raphson then approximates the linearization of f , at iterate 𝑖, around 𝛿𝑖 as

f(𝛿𝑖+1) ≃ f(𝛿𝑖) + H(𝛿𝑖)(𝛿𝑖+1 − 𝛿𝑖). (B.9)

We then find the improved estimate of displacement 𝛿𝑖+1 by line search on the descent
direction

𝛿𝑖 −H(𝛿𝑖)−1f(𝛿𝑖). (B.10)

With contact, at each Newton iterate we are now solving for updated triples of both
displacement and boundary contact and friction forces, (𝛿, 𝛼, 𝛽). Applying the same modified
linearization of (B.1) about 𝛿𝑖−1 then gives

f(𝛿𝑖−1) + H(𝛿𝑖−1)(𝛿𝑖 − 𝛿𝑖−1)− ℎ2

2
N𝛼− ℎ2

2
T𝛽 = 0, (B.11)
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Setting

r(𝛿) = b𝑡 + ℎ2

4
F(q𝑡 + 𝛿)− ℎ2

4
D(q𝑡 + 𝛿)(

2

ℎ
𝛿 − v𝑡)

+
[︀ℎ2

4
K(q𝑡 + 𝛿) +

ℎ

2
D(q𝑡 + 𝛿)

]︀
𝛿

(B.12)

at each Newton iterate, the linearized contacting system we want to solve is then

H(𝛿𝑖−1)𝛿𝑖 = r(𝛿𝑖−1) + ℎ2

2
N𝛼 + ℎ2

2
T𝛽,

0 ≤ 𝜆 ⊥ N𝑇 𝛿𝑖+1 ≥ 0,

min
𝛽
{𝛽𝑇T𝑇 ( 2

ℎ
𝛿𝑡+1 − v𝑡) : 𝜇𝑘�̄�𝑘 ≥ ‖𝛽𝑘‖, ∀𝑘 ∈ 𝒞}

(B.13)

or, equivalently

0 ≤ 𝜆 ⊥ℎ2

2
N𝑇H(𝛿𝑖−1)−1N𝛼

+ N𝑇H(𝛿𝑖−1)−1
[︀
r(𝛿𝑖−1) + ℎ2

2
T𝛽

]︀
≥ 0,

min
𝛽
{𝛽𝑇T𝑇 ( 2

ℎ
𝛿𝑡+1 − v𝑡) : 𝜇𝑘�̄�𝑘 ≥ ‖𝛽𝑘‖, ∀𝑘 ∈ 𝒞}

(B.14)

with the update 𝛿𝑖 = H(𝛿𝑖−1)−1
[︀
r(𝛿𝑖−1) + ℎ2

2
N𝛼 + ℎ2

2
T𝛽

]︀
.

Inner-loop solve of Newton steps To solve each Newton step we first backsolve to get

Ñ = H(𝛿𝑖−1)−1N,

D̃ = H(𝛿𝑖−1)−1D,

r̃ = H(𝛿𝑖−1)−1r(𝛿𝑖−1)

(B.15)

The solution then simplifies a bit further to finding

0 ≤ 𝜆 ⊥N𝑇 Ñ𝛼 + Ñ𝑇
[︀

2
ℎ2 r̃ + T̃𝛽

]︀
≥ 0,

min
𝛽
{𝛽𝑇T𝑇 T̃𝛽 + 𝛽𝑇T𝑇

[︀
Ñ𝛼 + 2

ℎ2 r̃− 1
ℎ
v𝑡
]︀

: 𝜇𝑘�̄�𝑘 ≥ ‖𝛽𝑘‖, ∀𝑘 ∈ 𝒞}.

(B.16)

We then solve the Newton step Gauss-Seidel fashion. Each Gauss-Seidel pass iteratively
holds all unknowns except for forces at a single contact 𝑘 ∈ 𝒞 fixed. We solve for the forces
at 𝑘, update them and then move on to the next 𝑘 + 1 ∈ 𝒞. We run multiple Gauss-Seidel
passes through the system until convergence is reached satisfying (B.16).

To solve for the updated forces (�̄�𝑖+1
𝑘 , 𝛽𝑖+1

𝑘 ) for contact 𝑘 ∈ 𝒞 in Gauss-Seidel pass 𝑖 + 1
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we compute

d𝑘 =
∑︁
𝑗<𝑘

ñ𝑗𝛼
𝑖+1
𝑗 +

∑︁
𝑗>𝑘

ñ𝑗𝛼
𝑖
𝑗

+
∑︁
𝑗<𝑘

T̃𝑗𝛽
𝑖+1
𝑗 +

∑︁
𝑗>𝑘

T̃𝑗𝛽
𝑖
𝑗 +

2

ℎ2
r̃𝑘 ∈ R𝑛.

(B.17)

Substituting in (B.16) we then solve the single-point frictional-contact problem at contact
k. This is just the small, three-dimensional problem to find (�̄�𝑖+1

𝑘 , 𝛽𝑖+1
𝑘 ) ∈ R3 satisfying

0 ≤ �̄�𝑖+1
𝑘 ⊥ n𝑇

𝑘 ñ𝑘�̄�
𝑖+1
𝑘 + n𝑇

𝑘 T̃𝑘𝛽
𝑖+1
𝑘 + n𝑇

𝑘d𝑘 ≥ 0,

𝛽𝑖+1
𝑘 = argmin

𝛽𝑘

{𝛽𝑘T
𝑇
𝑘 T̃𝑘𝛽𝑘 + 𝛽𝑘T

𝑇
𝑘 (ñ𝑘�̄�

𝑖+1
𝑘 + d𝑘 − 1

ℎ
v𝑡)

: 𝜇𝑘𝛼
𝑖+1
𝑘 ≥ ‖𝛽𝑘‖}.

(B.18)

We then update to (�̄�𝑖+1
𝑘 , 𝛽𝑖+1

𝑘 ) and move on to contact 𝑘 + 1.
On convergence of this inner Gauss-Seidel iteration to optimal (𝛼*, 𝛽*) we update to the

next Newton step displacement estimate to

𝛿𝑖 = r̃ + ℎ2

2
Ñ𝜆* + ℎ2

2
T̃𝛽* (B.19)

We form the new needed quantities for the next Newton step in (B.15) and then solve the
next Newton step with Gauss-Seidel. On convergence of the outer Newton iteration to
satisfying (B.1), (B.3), and (B.4) we then perform the Impact projection in (B.5) described
below and then move to the next time step.

Impact model solve To solve the BBI impact projection step in (B.5) we can reuse the
already computed final compliant term from the last iterate in (B.15). In dual form our BBI
impact projection is equivalent to solving the system

0 ≤ 𝜆 ⊥N𝑇 Ñ𝜆 + Ñ𝑇c ≥ 0,
(B.20)

and applying a final velocity update

v𝑡+1 ← 1

ℎ
(c + Ñ𝜆), (B.21)

with c given from (B.5). We solve the linear-complementarity problem in (B.20) with pro-
jected Gauss-Seidel.

B.2 SE(3) Projections

During free-flight motion we can project each body’s FE state to a fitted rigid body model
equipped with rotational 𝑅 ∈ 𝑆𝑂(3) and translational 𝑡 ∈ R3 degrees of freedom. Per body
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we choose coordinates so that 𝑅 rotates from principal-axis–aligned body frame to world
frame and 𝑡 gives the location of center of mass. Corresponding angular and linear momenta
are 𝜋, 𝑙 ∈ R3, with diagonal inertia tensor 𝐼 and mass 𝑚. Nodal positions of material points
𝑥𝑖 during rigid motion are then 𝑥𝑡

𝑖 = 𝑡𝑡 + 𝑅𝑡(𝑥0
𝑖 − 𝑡0). We set corresponding momenta to

(𝑝𝑇
1 , ...,𝑝

𝑇
𝑛 )𝑇 = Mv𝑡 ∈ R3𝑛, stack nodal vertices as Q = (𝑥1, ...,𝑥𝑛) ∈ R3×𝑛 and then project

to rigid state with

𝑅𝑡 ← argmin
𝑇∈𝑆𝑂(3)

||𝑇Q𝑡 −Q0||𝐹 ,

𝜋𝑡 ←
𝑛∑︁

𝑖=1

(𝑥𝑡
𝑖 − 𝑡𝑡)× 𝑝𝑡

𝑖, 𝑙𝑡 ←
𝑛∑︁

𝑖=1

𝑝𝑡
𝑖,

𝐼 ←
∫︁
Ω0

𝜌(𝑥)[𝑥][𝑥]𝑇𝑑𝑉, 𝑚←
∫︁
Ω0

𝜌(𝑥)𝑑𝑉.

(B.22)

We then timestep rigid body state forward through free-flight with DMV Moser and
Veselov [1991], an energy–momentum preserving rigid-body integrator, until the next colli-
sion is reached. Upon collision we again need to model elastic behavior and so project back
to closest FE state with nodal positions and velocities

𝑥𝑡
𝑖 ← 𝑡𝑡 + 𝑅𝑡(𝑥0

𝑖 − 𝑡0),

𝑣𝑡
𝑖 ← 1

𝑚
𝑙𝑡 −𝑅𝑡(𝑥0

𝑖 − 𝑡0)× (𝐼−1𝜋𝑡).
(B.23)

Comparing the output trajectories between the full FEM simulation and our hybrid
projection trajectory we find a tight match throughout. We show the trajectories obtained
from full FEM and the hybrid for our jumping-over example. Both simulations are initialized
to the same configuration and terminate at first impact. Here the jumper traces out an
approximately 20cm long trajectory while the two simulated trajectories differ in the 𝐿∞-
norm by 0.63 mm for the linear trajectory, i.e., center of mass, and 0.02 radians in rotational
pose over the trajectory.

B.3 Static Contact Solver

Loading model We observe in experiment that initial loading processes are effectively
quasistatic, with no-slip at contacts. We then model the loading phase with a custom static
solver that finds equilibrium state subject to satisfying no-penetration contact constraints
p ≥ 0 and an assumption of infinite (no-slip) friction. We solve for a 𝛿 that gives the
constrained equilibrium system maximizing frictional work

𝐹 (q0 + 𝛿) + N𝛼 + T𝛽 + F𝑙𝑜𝑎𝑑 = 0,

0 ≤ 𝛼 ⊥ p(q0 + 𝛿) ≥ 0,

𝛼 ⊥ T𝑇 𝛿, ∀𝑘 ∈ 𝒞.
(B.24)
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Static solver Our static solver applies a direct solution approach to compute nodal po-
sitions q subject to external loads F𝑒𝑥𝑡 with infinite-friction (no-slip) unilateral breaking
contact. At each iteration step 𝑖, we initialize a Newton-Raphson search direction 𝛿𝑖

K(q𝑖)𝛿𝑖 = F𝑒𝑥𝑡 − F(q𝑖).

subject to Dirichlet boundary conditions fixing a set of previously identified active contacting
boundary vertices identified in the prior iterate. At each iteration we apply a projected
line search. We first analyze the depth-component of all the previously identified active
contacting points q𝑗. If q𝑗 penetrates an obstacle, we half the step size of the search direction
until the penetration depth for that point is less than 10−2 × 𝑑𝑥 where 𝑑𝑥 is characteristic
rest element size in our discretization. After applying the line search, we then update the set
of active contacting vertices as follows and take the next iterate step. Initially, all vertices
touching an obstacle boundary are treated as fixed vertices. We then update the active set
of contacting vertices by examining force consistency on all vertices currently contacting
the boundary. If the force on a contacting boundary vertex opposes the contacting normal
direction, we free it by removing it from the active set; if a contacting boundary vertex was
previously free and is now penetrating, we project it back to the contact boundary surface
and add it to the active set. We run this solve to convergence satisfying equilibrium in
(B.24).

We verify our static solver with respect to full dynamic FEM simulation modeling loading
with frictional contact. We find that the relative geometric difference between solutions is
0.2% (Hausdorff distance) while the relative difference between internal energies is 0.4%,
with an overall 15X speedup gain from the static solver over the dynamic FEM loading
simulation.

B.4 Stiffness Consistent Mass Matrix

We assemble our full mass matrix from element mass matrices. Within each element 𝑒, we
integrate

M𝑒 =

∫︁
Ω𝑒

8∑︁
𝑖=1

𝜌𝑒N𝑖(𝜉)N𝑇
𝑖 (𝜉)𝑑Ω

using 2-point Gauss quadrature. Here N𝑖s are the tri-linear shape functions used for our FE
calculations including stress computation. Thus the mass matrix is stiffness-consistent and
consistently captures both linear and angular momentum of the system.

B.5 Constraint assembly

For each contact 𝑘 ∈ 𝒞, the relative acceleration between material points 𝑥𝑖 and 𝑥𝑗 (at
contact 𝑘) can be expressed via the map Γ𝑘 : q̇ → �̇�𝑖 − �̇�𝑗. If 𝑦 ∈ R3 is a force applied
to point 𝑥𝑖, and an equal but opposite force is applied to point 𝑥𝑗, Γ𝑇

𝑘 𝑦 is the resulting
generalized force applied to the contacting system. For contact 𝑘, the map Γ𝑘 is the sparse
matrix with non-zero entries corresponding to nodes participating in the contacting vertex
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or vertices. For nodal vertex-boundary contact, a single identity entry corresponding to the
node’s DoFs is sufficient. For vertex-quadrilateral contacts, we compute the signed identity
entries for the five participating face node DoFs weighted by the bilinear weights of the
contacting points in the face quadrilateral.

B.6 Experiments on Choosing Predictive Simulation

Accurate physical modeling of transient dynamics with contact is validated by experiment
and generally requires simulation at close to convergent spatial and temporal grid sizes.
This makes even a single forward dynamic simulation run in 3D prohibitively expensive.
On the other end of the spectrum physically based animation methods seek efficiency by
pushing simulations towards maximally stable time-step sizes and coarsest possible spatial
meshes to obtain visually appealing but generally highly inaccurate dynamics. Here we detail
our experiments and investigations towards designing predictive and efficient simulation of
high-speed dynamics under frictional contact, impact, loading and free-flight suitable for
fabrication design.
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