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Input: Two objects Output: Connector
(a) Mobile phone mounter for a car dashboard (b) Mug holder for a chair arm

Output: ConnectorInput: Two objects

Figure 1: AutoConnect creates 3D-printable customized connectors based on shapes of two given objects and a user-specified configuration.
Custom holders are created for connecting a mobile phone to a car dashboard (a), and a mug to a chair (b).

Abstract

We present AutoConnect, an automatic method that creates cus-
tomized, 3D-printable connectors attaching two physical objects
together. Users simply position and orient virtual models of the
two objects that they want to connect and indicate some auxiliary
information such as weight and dimensions. Then, AutoConnect
creates several alternative designs that users can choose from for
3D printing. The design of the connector is created by combining
two holders, one for each object. We categorize the holders into
two types. The first type holds standard objects such as pipes and
planes. We utilize a database of parameterized mechanical holders
and optimize the holder shape based on the grip strength and mate-
rial consumption. The second type holds free-form objects. These
are procedurally generated shell-gripper designs created based on
geometric analysis of the object. We illustrate the use of our method
by demonstrating many examples of connectors and practical use
cases.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.8 [Computer
Graphics]: Applications

Keywords: 3D printing, fabrication, functional design

1 Introduction

Modern manufacturing processes such as 3D printing allow users
to personally manufacture and print 3D objects. However, de-
signing functional 3D objects is challenging, complex, and it

demands domain-specific expertise. To address this, many end-
users are limited to selecting 3D objects from design repositories
(e.g., http://www.thingiverse.com). One very common
type of design in these repositories is a connector that attaches two
mass-manufactured objects in a new way. For instance, there are
many different designs for attaching smart phones to bikes. However,
if users want custom connectors that attach less common objects, or
attach two objects in a particular way, finding the right connector is
typically impossible.

We address this problem by developing a method that automatically
creates custom connectors for attaching two arbitrary objects in a
desired configuration. Our AutoConnect method requires 3D models
of both objects, such as an iPhone and a car dashboard or a mug and
a chair-arm (see Fig. 1). Such models could either be downloaded
from the Internet or created using scanning systems such as Kinect
Fusion or Autodesk 123D Catch. Users virtually position both mod-
els relative to each other and provide some auxiliary information
about them (e.g., dimensions, weights, directions of free motion, and
regions on the object that should remain uncovered). AutoConnect
then provides a set of diverse suggestions of potential designs that
are tailored specifically to connect the two input objects. These sug-
gestions are computed by running geometric and force analyses in
the background. Once users choose a design, AutoConnect finalizes
and creates a customized connector that attaches the two objects in
the desired configuration. The connector is functional and can be
fabricated using a 3D printer. Fig. 2 summarizes this workflow. The
user provides the “what and where,” and our AutoConnect method
determines the “how.”

Our proposed problem is challenging because a complete geometry
of a functional connector that can attach two input objects needs
to be created automatically. Furthermore, there are many different
possible design choices and objectives. The two objects can have
completely different geometric structures. Some objects (e.g., chairs,
tables) contain common shapes such as pipes or planes, but others
(e.g., the Stanford bunny or shoes) have a free-form surface design.
In addition, other considerations such as printing cost and aesthetics
must also be addressed. Finally, connectors must be fabricated
and satisfy the physical requirements (e.g., holding objects without
breaking or slipping).

We classify the objects being connected into two categories: struc-
tured objects that have a simple standard shape, such as a cylinder
(bike frame) or a box edge (table top), and free-form objects that
have a non-standard shape. We define two types of holders for
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Import two geometries Output geometryPosition and orient Select from the options

Specify auxiliary information Push the “Connect” button

Input objects

Figure 2: User experience. AutoConnect requires a simple input to obtain a functional connector. Our method generates many connectors and
allows users to choose the best one. Users can also specify some auxiliary parameters such as a free motion direction and a region on the
object that should not be covered.

these two categories, respectively. For structured objects, we use a
database of parameterized mechanical holders. We optimize holder
parameters based on the grip strength requirements and the mate-
rial usage (§3). For free-form objects that cannot be held using
structured mechanical holders, we create a custom shell-like holder
based on geometric analysis of the connected object (§4). The final
connector is created by combining two such holders. Hence, the
final connector could be composed of two mechanical holders, a
mechanical holder and a free-form holder, or two free-form holders.
The holders themselves are fused using a structure that takes into
account the physical requirements of the objects (§5). If one of the
two objects is to be 3D-printed directly, we simply fuse it with a
single holder (see Fig. 13 (i)).

Our primary contribution is to present the first method that automat-
ically creates 3D-printable connectors and to validate this method
on a number of practical use cases (Fig. 1). To enable this practical
application, we offer the following two technical contributions for
generating functional holders:

• We create a set of 3D-printable, parameterized, mechanical
holders as well as an associated data-driven model that ac-
curately captures their properties. All this is included as a
supplementary material with the paper. We show how holder
parameters can be optimized according to the desired grip
strength.

• We develop a method for generating holders for free-form
objects that ensures appropriate holdability and grip based on
geometric analysis. We automatically create a diverse set of
holders for the user to choose from.

2 Related Work

Commercial Sites and Systems Today, one of the most popular
ways to obtain functional models for fabrication is to search for
such models on the Internet. For example, Thingiverse is a web
site for such a purpose where end-users can download and share 3D
models. User can find many iPhone cases and bike connectors, but
if they want a special kind of case or connector, chances are that
this specific 3D model will not be found. Some 3D models allow
customization by exposing some parameters, but customized connec-
tors are rare and are usually limited to some trivial modifications—
users can rarely change the type of objects being connected. In
contrast, our method allows creating a completely new connector
for a variety of objects and their relative arrangements. Another way
of creating connectors is to design them using CAD tools such as
Solidworks [Dassault Systèmes] or AutoCAD [Autodesk]. However,
this requires domain-specific expertise and taking into account any
functionality constraints. We develop an automated method that
allows end-users to easily generate connectors between any two
target shapes and some intuitive input parameters.

Functional Design and Fabrication In order to allow non-expert
users to create functional objects, researchers have investigated var-
ious computational design methods. Each of these tools produces
objects that meet some specific functionality. For example, Prévost et
al. [2013] proposed a method to evaluate and optimize the standabil-
ity of 3D-printed objects, while the method proposed by Bächer et
al. [2014] considers the spinability of objects. Umetani et al. [2014]
proposed a method to deal with flyability of lasercut paper airplanes.
General structural strength of 3D-printed objects has also been in-
vestigated recently by Stava et al. [2012] and Lu et al. [2014]. In
our method, we focus on two specific functionalities for designing
connectors: grip strength of mechanical holders, and holdability of
free-form shapes. Other works follow an interactive approach to
modeling, while still constraining some functionality of a design.
These include works on durability and validity in interactive fur-
niture design [Umetani et al. 2012], creation of chairs [Saul et al.
2011], stacking ability [Li et al. 2012], and fabricability by including
connectors and fasteners [Schulz et al. 2014]. There is also a range
of works that do not necessarily target fabrication but still address
semantic-aware shape manipulations of man-made objects (e.g., [Xu
et al. 2009; Gal et al. 2009; Fish et al. 2014]). In our work, the
human interaction part is kept to a minimum—only placing the two
objects relative to each other and choosing some initial parameters.
The system proposed by Schulz et al. [2014] also utilizes existing
functional models to create new ones from parts. Such an example-
based approach to modeling is promising, especially to help novice
users with little knowledge to design new objects. Our method for
designing mechanical holders is an implicit example-based method,
since we use a database of parametric models of 3D-printable me-
chanical holders. However, the user does not need to explicitly pick
or change the design—this is done automatically.

3D-Printing Mechanisms Modern commercial 3D printers al-
low printing not only static parts, but complex mechanical objects.
By combining mechanism design with computational techniques,
researchers have investigated several applications, for example, de-
signing and printing articulated models [Calı̀ et al. 2012; Bächer
et al. 2012], toys [Zhu et al. 2012; Zhou et al. 2014], characters
with designable motions [Coros et al. 2013; Thomaszewski et al.
2014], and figures that mimic human motions [Ceylan et al. 2013].
Others allow printing small working-prototypes of mechanical de-
signs for testing [Koo et al. 2014]. Our method is the first to utilize
mechanical holders for effectively gripping target objects. In ad-
dition, we combine the design with real-world measurement data
to estimate functionality given different shape parameters. This
measurement-based approach encapsulates the complex mechanism
of holders, and allows handling many types of mechanisms in a
consistent manner. Cost considerations also come into play when
printing. Similar to previous work that examines the tradeoff be-
tween cost and strength [Wang et al. 2013], we consider the tradeoff
between cost and grip strength while optimizing the shape parame-
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ters of mechanical holders. Optimizing for the best orientation or
best support structure is an important consideration [Vanek et al.
2014; Hu et al. 2014; Umetani and Schmidt 2013], but we do not
address these issues in this work.

Analysis of Holding Objects Methods to hold objects could be
broadly classified into two categories: holding objects by using fric-
tional forces (e.g., pinching an object with two fingers), and holding
objects by contact regardless of the friction (e.g., enveloping an ob-
ject in your palm). In robotic grasping theory, these two alternatives
are called force closure and form closure, respectively [Bicchi and
Kumar 2000]. In our work we use both methods. We use force
closure for mechanical holders using data-driven measurements, and
form closure for free-form objects. A force-closure approach is
also possible for free-form objects, by using physical analysis. For
example, Chen et al. [2014] introduce a force-closure example of
a phone holder. However, robotic hands can be actively actuated,
while 3D-printed holders are passive. Our form-closure approach
to free-form objects uses a holdability criterion. This criterion is
related to methods in robotic grasping, but it is tailored to our appli-
cation. In robotics, robotic-hands with a small number of contact
points are used (e.g., tips of robotic fingers). In our approach, we
generate a continuous wrapper that fits the target free-form shape.
We are also interested in holders that do not completely restrain the
objects. These holders have free directions – the directions in which
the held object is able to move without being blocked by contact.
This allows, for instance, easy insertion or removal of the object
into our holders. Such blocking relationships are investigated in
the assembly planning domain [Wilson 1992; Hirukawa et al. 1994;
Agrawala et al. 2003]. Our method uses a similar formulation to
generate holders with free directions. However, as our target shapes
is a free-form holder enclosing a free-form object, more contact
points have to be dealt with than in assembly planning scenarios.

3 Holders for Structured Objects

We define a structured object as one in which its attachment area
can be well approximated by a standard shape, which, in our current
implementation, consists of: a cylinder, a rectangular-prism, a box-
edge, and a flat-plane (Fig. 3). These standard shapes do not need
to define the whole shape and can describe only a part of a given
shape, as a single object can have multiple attachment areas. As an
example, a table can be approximated by a flat-plane at the top, four
cylindrical legs, and a box-edge at the table edges. The attachment
area of a 3D object can be classified into one of these shapes by
analyzing the object using geometry processing methods such as
slippage analysis [Gelfand and Guibas 2004], or a manual labeling
by the user. Hence, we assume that this information is part of the
object description. Any object that does not fall under one of these
categories is treated as a free-form shape (§4).

We create a database of mechanical holders annotated with their
grip strength information (§3.1). We currently use six types of
mechanical holders, shown in Fig. 4. Each holder type corresponds
to one of the four standard shapes (e.g., a cylinder, a flat-plane).
The holders are designed using CSG-tree representations and are
parameterized with a small number (≤ 4) of parameters, such as
“width” and “thickness.” These parameters are used to optimize
the shape of the holder. Some of the parameters are used to fit the
holder to the target object dimensions. Others are used to search for
designs that minimize the volume and provide adequate grip strength
(§3.2) according to a pre-defined table of stored measurements (§3.1).
All of the resulting models of holders, including suction cups and
multi-material toggle clamps, can be printed using a commercial
printer.

Cylinder Rectangular-prism

Box-edge

Flat-plane

Figure 3: Standard shapes in our current implementation. We
assume that a structured object is composed of these shapes.

Snap pipe clamp
4 parameters
Cylinder

Cam pipe clamp
3 parameters
Cylinder

Strap pipe clamp
1 parameter
Cylinder

Snap box clamp
4 parameters
Rectangular-prism

Toggle clamp
3 parameters
Box-edge

Suction cup
3 parameters
Flat-plane

Figure 4: Mechanical holders in our database. In each holder, the
three lines of text indicates the name, the number of parameters, and
the standard shape that the holder attaches to.

To learn the relationship between the design parameters and the grip
strength, we pick a set of sample points in the parameter space and
print the respective holder designs. We then physically measure
the grip strength and use interpolation to define an approximated
grip-strength function for this holder. Note that the design and
measurements of a given holder are performed once, stored in the
database, and then used by our method to create many connectors.
Because we provide this grip strength database as supplementary
material, other implementations of our method do not need to repeat
the database creation step. To add a new mechanical holder to the
database, the following steps are necessary: designing a holder as a
parametric model, printing holders with various sampled parameters,
and measuring their grip strengths. The measurements take around
two hours in our experiments for each new holder type. This process
needs to be done only once performed by anyone. Once users have
oriented and positioned the objects, the database is queried, and a set
of candidate holder designs is created by optimizing for minimum
material consumption while maintaining the requested grip strength
(§3.2).

3.1 Grip Strength Database

Under normal operating conditions, mechanical holders are expected
to stay rigidly attached without any movement. To be precise, we
use the term grip strength to mean the minimum force and torque
required to perturb the holder away from the gripping configuration.
When we search the database for the appropriate holders (§3.2), we
require an estimate of the grip strength provided by the holder for
various parameter values.

Building an accurate model to predict the strength of the mechanical
holder is a difficult task. Such a model would need to consider not
only the anisotropic elasticity of the printed material but also the
frictional forces or air pressure between the holder and the object.
Additionally, for some of the connector mechanisms currently in
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our database, such as the toggle clamp or the cam clamp, we would
also require an accurate contact model internal to the mechanism
itself. If we were to add new types of mechanisms, such as Velcro,
snap fasteners, or even screws, we would require a very complex,
non-standard physics simulation. Finally, we require an approach
that can analyze numerous parametric designs at interactive rates.

In order to make this problem tractable, we make some simplifying
assumptions. First, we assume that we are dealing with light-weight
objects, such as hand-held objects. Second, we assume that the
weakest part of the holder is at the interface between the holder and
the object—in other words, the holder itself does not break first.
Third, we assume that the material properties do not depend on
the number of times or the amount of total time the holder is used.
Finally, we assume that the surface that the mechanical holder grips
has a relatively low coefficient of friction (e.g., we assume the worst
case, low friction, scenario). See the supplemental document for a
comparison of the gripping forces for two surfaces with different
coefficients of friction.

A natural approach for estimating the grip strength is to use physical
simulation each time a parameter is changed. For some of the
holders in our database, simulation techniques would indeed be very
effective. However, because typical simulation techniques would
not suffice for some of the other holders, such as the suction cups or
toggle clamps, we take a data-driven approach by building a lookup
table of real data measurements. We capitalize on the recent success
of data-driven physics in the context of digital fabrication [Bickel
et al. 2010; Umetani et al. 2014]. Note, however, that it is possible
to use simulation results in the lookup table along with measured
results.

In our approach, we use scattered-data interpolation to learn the
relationship between the design parameters x and the grip strength.
We physically measure the grip strength for a discrete set of sample
points in the parameter space. We use interpolation to define the
grip strength functionsGforce(x) andGtorque(x) on the whole para-
metric space. In our implementation, we use Radial Basis Function
(RBF) interpolation [Anjyo et al. 2014], with the Gaussian kernel
K(x) = exp(−x

2

2
). Other types of interpolation are also possible.

To compute the grip strength for each sample point, we print the
specific holder model and physically measure the minimum force
and torque that is required to move the holder by slowly pulling
on the holder as shown in Fig. 5. We use a digital force meter
to measure forces, and a video camera to record the measurement
process, so that we can read the maximum force before the holder
starts to move. We consider various possible directions for each
printed holder and we use the minimum force to produce movement.
When the movement occurs rotationally for a certain direction, we
compute the torque around the center of rotation by dividing the
measured force by the moment arm, and register the torque value
to the database. For each mechanical holder, we obtain 15 to 25
sample points according to the number of design parameters. Details
of the measurement setting and discussions of the quality of this
approach can be found in the supplemental document. Although
the accuracy of this approximation is moderate, in practice, using a
small safety factor (§3.2) is enough to produce satisfactory results
that also account for data interpolation.

3.2 Optimizing Shape Parameters

In most mechanical holder designs, there is a trade-off between the
volume (material consumption) and the functionality (grip strength)
of the holder. To balance such a trade-off, our method optimizes
the parameters of mechanical holders so that the user can reduce
the consumption of unnecessary materials while ensuring that the
holder satisfies the functional requirement.

Mechanical holder

Force meter

Figure 5: Our setup for measuring the grip strength. We measure
the minimum force and torque that are required to move the holder
by pulling in various directions.

The functional requirement is on the required grip strength:
Gtarget

force = s‖mg‖ and Gtarget
torque = sl‖mg‖, where m is the mass of

the object, l is the distance between the center of mass and the axis
of the rotation1, and s is the safety factor, set by the user. (We use
the default value of s = 5 unless otherwise stated.) This assumes
the worst-case scenario of the direction of the applied force being
perpendicular to the moment arm direction, creating maximal torque.
Hence, the optimization is formulated as minimizing the volume
objective, with a constraint that the grip strength will be larger than
Gtarget

force and Gtarget
torque.

minimize
x∈X

V (x)

subject to Gforce(x) ≥ Gtarget
force ,

Gtorque(x) ≥ Gtarget
torque,

Cgeom(x) = 0,

C1(x) ≥ 0, · · · , Ck(x) ≥ 0,

(1)

where x ∈ X are the parameters that should be optimized, whose
variable range X is manually designed for each holder type (see
the supplemental document), V (x) is a function that provides the
volume of the design, G(x) is the function that provides the esti-
mated grip strength for a given parameter setting x described above,
Cgeom(x) is a geometric constraint that ensures the design fits the
target standard shape (e.g., the radius of a pipe clamp should be
determined by the radius of the target pipe), and C1(x), . . . , Ck(x)
are any additional constraints, such as minimum thickness.

Because we use CSG representations for the holder designs, exact
computation of the volume V (x) can be time consuming (e.g., for
the toggle clamp, it takes a few minutes to compute V (x)). To
efficiently compute the volume during optimization, we approximate
it by using an RBF data-interpolation approach; as preprocessing, we
generate many sample designs with various parameters x, compute
their exact volumes, and define the function V (x) for the whole
parametric space using interpolation. Other approaches, including
analytical approaches, are also possible.

The optimization itself is solved by COBYLA (gradient-free opti-
mization) algorithm [Powell 1998] from the NLopt library. (Other
algorithms, such as simulated annealing, can also be used.) To
avoid getting stuck in local minima, we generate 20 random ini-
tial solutions for the optimization, and use the best results. This
computation usually takes less than one second to complete. Fig. 6
shows example results of the snap pipe clamp for various target grip
strength.

1We define the (approximate) axis of the rotation for each holder type
based on the observation during measurement. This is described in the
supplemental document.
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Optimal design

Closeness
Thickness

Width
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Figure 6: Example results of our optimization while increasing the target grip strength Gtarget
force (from left to right) for the snap pipe clamp.

This clamp has 4 design parameters, one of which defines the target diameter and is fixed in the example. The other 3 parameters are optimized
so that the volume is minimized while the target grip strength is achieved. For explanatory purpose, we specify Gtarget

torque = 0.0 N ·m here.

Area expansion

Figure 7: Generating a free-form holder (orange) by computing the
shell starting from a seed point (red) until the holdability criteria is
achieved.

4 Holders for Free-Form Objects

If the attachment area of an object does not have a standard shape,
we categorize the object as a free-form object. For such an object, we
use a geometry-based approach to generate a holder whose contact
points prevent the object from moving. The user can optionally
specify some auxiliary information, such as areas on the object that
should remain uncovered and free motion directions. As a general
principle, we aim to generate a small but diverse set of holders for a
given object. Then, the user picks a holder from this set.

The overview of the approach is shown in Fig. 7. The input is the
mesh of the free-form object. We choose a starting point on the
mesh and apply area expansion using several priority biases (§4.1).
As the holder area expands, the contact area increases. This makes
the holder more and more capable of constraining the motion of the
object. We terminate the expansion when the holdability criterion is
satisfied (§4.2). The result is a set of triangles that provide contact
points that hold the object rigidly. This set is converted into a 3D-
printable mesh by thickening. In our approach, we do not consider
elastic forces and friction but rather assume that everything is rigid.
We rely on the geometric hold due to contact. Because there are
many possible areas that can achieve holdability, and there is no
clear optimal solution, we generate many candidate designs and
allow the user to pick the most suitable one.

The generation of the free-form holder designs is composed of the
following steps:

• Analyze the input mesh to find intrinsic-free motions (§4.3).
• Generate a shell that can hold the target object (§4.1 & §4.2).
• Optionally split the shell into multiple parts (§4.4).
• Select a diverse subset of designs to show to the user (§4.5).

4.1 Shell Computation

Computing a shell is governed by three principal characteristics, in
addition to the stopping criteria §4.2: (1) what target shape to fit, (2)
where to start (what seed triangle to use), and (3) what priority for
area expansion to use.

By default, the target shape is the entire surface of the object. How-
ever, in order to create alternative designs, we also use the convex
hull of the shape as an additional target shape for the creation of
free-form holders. Other targets such as the lower envelope are also

possible. In addition, users can specify certain regions on the mesh,
such as the screen of a mobile phone, that should not be covered by
the holder. The triangles in these regions are marked as uncoverable
and they are not considered when expanding the holder area.

The starting point for the process has a large effect on the gener-
ated holder shape. For aesthetic reasons we use symmetry cues to
generate these starting points. We detect the global reflective sym-
metry planes of the object ([Mitra et al. 2006; Podolak et al. 2006]),
and choose the starting points by uniformly sampling from these
planes. If no symmetry is found, we generate starting points for the
expansion randomly.

The priority used in the queue for the area expansion also has a
significant effect on the final shape of the holder. It biases the
expansion direction by determining which triangles will be added
next. The basic priority used is the geodesic distance of the triangle
t in question to the seed triangle s. We use the weighted sum of
the geodesic distance from the seed and two additional terms as our
priority:

w1Dgeod(t, s)+w2 min
k
Dsymm(t, Pk)+w3Dnorm(n(t), N) (2)

where Dgeod(t, s) is the geodesic distance between the barycenters
of triangle t and triangle s,Dsymm(t, Pk) is the distance between the
barycenter of t to the kth symmetry plane Pk, and Dnorm(n(t), N)
is the angle between the normal n(t) of triangle t and a global
direction vector N . The first term is used simply to expand the area
at a constant speed on the target shape from the seed. The second
term is used to encourage expansion along the symmetry planes
(computed beforehand when finding seeds). Note that we can use
a negative w2 weight to expand in directions perpendicular to the
symmetry planes. The third term is used to bias the expansion to
cover certain mesh regions. For example, by setting N to the gravity
direction, we can increase the coverage of the holder in the bottom
part of the object (e.g., for cup holders).

4.2 Holdability Criterion

To determine when to terminate the shell computation process, we
use the holdability measure. Holdability indicates how well the
contact area prevents the object from moving. Each time we add a
triangle, we recompute the holdability measure and stop the process
if it is above a certain threshold.

Our approach combines and extends two related concepts: form clo-
sure2 from robotics [Bicchi and Kumar 2000] and slippage analysis
from geometry processing [Gelfand et al. 2003; Gelfand and Guibas
2004]. Like slippage analysis, our approach deals with the geom-
etry, or the triangle mesh, of the object, and thus handles a large

2“A condition of complete restraint in which the grasped body can resist
any external disturbance wrench, irrespective of the magnitude of the contact
forces.”
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(More) RigidRigidNon-rigidNon-rigid

Figure 8: 2D schematic examples of our rigid and non-rigid cases.
If there is no free-motion, we consider it is rigid; otherwise, it is non-
rigid. Purple and orange parts correspond to the target and holder
meshes respectively. Gray arrows correspond to free-motions.

number of contact points compared to grasp analysis in robotics.
However, unlike slippage analysis, our approach deals with unilat-
eral (inequality) contact constraints, which are handled by grasp
analysis. Proper handling of unilateral constraints is critical because
we need to differentiate between penetration and separation. For
example, slippage analysis would mark all of the cases in Fig. 8 as
rigid, since any motion of the object causes the surface of the object
to penetrate into or separate from the surface of the holder. Our
approach correctly identifies the rigid and non-rigid cases because it
can differentiate between penetration and separation.

inside

outsideφ

n
xp

To define holdability, we start with the 6-
dimensional rigid motion (or twist), φ. Let p
be a surface point with position x and normal
n. Given p and φ, we can compute how much
the surface point p moves along its outward nor-
mal. This value measures the amount of block-
age experienced by the point p when the object
is moved infinitesimally by φ. We call this the
contact blockage, denoted b(p, φ). This is a unilateral condition –
if the point moves away from its outward normal, then there is no
blockage, and so b always takes on a non-negative value. (See the
supplemental material for the derivation of b.)

As the holder area expands, the number of contact points increases.
For each triangle, we use the barycenter as the contact point, as-
suming that the input mesh is well-conditioned. Let T be the set
of triangles of the current shell. Given T and φ, we define a non-
negative valued subregion blockage as a sum of contact blockages:

B(T , φ) =
∑
i

b(pi, φ), (3)

where pi is the barycenter of the ith triangle. Intuitively, B repre-
sents the amount of blockage the holder applies to the object when
the object tries to move in the direction φ. If B(T , φ) = 0, then
none of the triangles in the holder blocks φ, and thus φ is a free-
motion. In this case, the object can locally move away from the
holder defined by T without any collisions. If B(T , φ) > 0, then
there is at least one triangle in T that blocks the object from moving
in the φ direction.

We define the holdability of the holder T as the minimum blockage
with regard to all the possible motions.

H(T ) =

{
minimize

φ
B(T , φ),

subject to ‖φ‖ = 1.
(4)

We treat φ as a 6D direction, and so we restrict the search to the unit
hypersphere ‖φ‖ = 1. (We can also use any small positive number
instead of 1.) We use hyper-spherical coordinates to parameterize φ,
giving us an unconstrained minimization problem with 5 degrees of
freedom that allows us to deal with the constraint ‖φ‖ = 1 implicitly.
When H(T ) > 0, i.e., B(T , φ) > 0 for any φ, the target object

Figure 9: Concept of intrinsic free motions. These 2D schematic
examples show areas for holder expansion (purple), constrained
regions (yellow), “maximum” holders (orange), and intrinsic free
motions (gray).

is considered to be rigidly held by at least one triangle and cannot
move without any collision.

We define the normalized holdability measure as

H̃(T ) = H(T )
H(Twhole mesh)

, (5)

so that 0 ≤ H̃ ≤ 1. This normalization allows us to use the
same threshold to get adequate results for all our examples. If
H̃ ≈ 0 the area holds the object very lightly, and if H̃ ≈ 1, the
area holds the object very rigidly. To balance the scaling effect of
the rotations vs. translations, we regularize (scale and translate) the
mesh into the unit bounding box before evaluating this function.
This has the effect of roughly equalizing the maximum torque to
the unit translational force [Gelfand et al. 2003]. To solve this
minimization problem (Eqs. 4–5), we use COBYLA, a gradient-free
method [Powell 1998]. We run this optimization every time we add a
new triangle and terminate the process when H̃(T ) becomes greater
than a threshold. In our implementation, we set this threshold to
0.1. The shell computation process finishes in a few seconds for a
smaller mesh and around 10 seconds for a large mesh.

4.3 Free Motions

In some cases, the holdability measure is zero even if all triangles of
the mesh are included in the triangle set T . For example, for objects
with primitive shapes such as a sphere or a cylinder, there remains
a rotational motion that cannot be blocked by the holder composed
of all the triangles of the object mesh. We call these unblockable
motions the intrinsic free motions of the object. Before starting the
shell computation process, we analyze the input mesh to find these
intrinsic free motions. We ignore these motions when computing
the holdability measure for the stopping criteria. The algorithm for
computing the set F = {φfree

i } of intrinsic free motions of an object
is given in the supplemental material. We run this algorithm on the
whole input mesh as a preprocessing step before we start the shell
computation process.

Some examples of intrinsic free motions are given in Fig. 9. (The
yellow regions are marked as uncoverable by the user.) Let us first
consider the box example with one free intrinsic motion (the second
one from the left). Let φfree be this free motion. When we solve
for φ in Eq. 5, we want φ to not point in the same direction as φfree.
The can be expressed as

φ · φfree ≤ α. (6)

This constraint forces the solution, φ, not to point within a cone of
directions centered around φfree. The parameter α controls the size
of this cone. For the box example in Fig. 9, since there is a single
free direction, α = 1 would work well, preventing φ from pointing
exactly in the direction of φfree. However, for the triangular object
in Fig. 9, there is a cone of intrinsic free motions, indicated by the
three gray arrows. If we know exactly what this cone is, then we
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Figure 10: Leave-one-motion examples, where the up direction is
specified as an extrinsic free motion. Each example is shown from
two different views. For the mug example, the convex hull is used for
shell computation.

can set the correct value of α, and a single φfree would be sufficient
to fully cover the free motion directions. However, since we do not
know the extent of these cones for an arbitrary mesh, we set α < 1
and sample the cone of free directions. If α becomes closer to 1 then
the approximation becomes more accurate and we will obtain more
solutions at the expense of requiring more φfree

i . For the triangular
shape in Fig. 9, we have i = 3 with each φfree

i covering roughly a
third of the total cone. In our implementation, we use α = 0.5 for
all the examples.

In some cases, users may manually specify additional free motion
directions, which we call extrinsic free motions. For example, users
may specify that the holder should not block the object from moving
vertically up, so that they can insert and remove the object freely
in that direction. (In this case, φfree = (0 0 0 0 0 1)T , assuming
gravity points in the −z direction.) We add these additional motion
directions to the set F of intrinsic free motions.

To incorporate F into our pipeline, we slightly modify both the
area expansion process and the holdability criterion. First, when
expanding the holder area, we do not add a triangle that blocks any
of the specified free motions in F . In other words, we only add
triangles that satisfy the following criteria:

b(p, φfree
i ) = 0, ∀φfree

i ∈ F , (7)

where c is the contact penetration function from §4.2, and p is the
contact point on a triangle. (Note that b represents a unilateral
contact constraint, and thus is never negative.) Second, we modify
the computation of H(T ) in Eq. 4 by adding additional constraints:

φ · φfree
i < α, ∀φfree

i ∈ F . (8)

These constraints keep φ away from all the intrinsic and extrinsic
free motions.

Discussion Fig. 10 shows some examples of free-form holders,
where the up direction is specified as an extrinsic free-motion.
Fig. 11 (left) shows a failure case, where shell computation ter-
minates before achieving the stopping criterion because no more
triangles can be added due to the condition Eq. 7. Thus, there are
many free motions left in the resulting holder. One possible solution
is to use the extrusion towards the specified extrinsic free direction
as the area expansion target, as shown in Fig. 11 (right).

4.4 Splitting and Attaching Snapfits

Snapfit mechanismWhen users do not specify any (extrinsic)
free-motion, we split the shell into mul-
tiple parts so that we can physically at-
tach/detach the shell to/from the target ob-
ject without any intersection. We use the
symmetry planes of the target objects if
available or ask users to specify these cut-
ting planes. We then add snapfit mechanisms (see the inset image)

Extrusion

Figure 11: A failure case in leaving one free direction for shell
computation (left). In this case the up direction was specified, but
the shell computation process stops before achieving the stopping
criteria, while leaving more than one free direction. The process
stops because no triangle can be added without blocking the up
motion. A solution to this can be found by expanding the holder on
an extrusion of the object along the free motion direction (right).

Figure 12: (Top) 48 mug holder candidates are generated, from
which the 9 holders annotated with boxes are selected by the
clustering-based selection algorithm. (Bottom) Close up views of
some selected mug holders.

for each split part to ensure that the parts can snap to each other.
In our implementation we use only translational snapfits, but it is
possible to attach rotational snapfits (e.g., locking hinge) when a
rotational motion path is available. Please see the supplemental
material for more details.

4.5 Providing a Diverse Subset

The generated holders are sometimes similar to each other even
when different area expansion weights (Eq. 2) are used. Here, we
show a simple algorithm to select a small number (∼ 9) of diverse,
distinguishable holders from the randomly generated outputs (∼ 40).

Let n be the target number of designs to display to the user. First,
we run the shell computation process m (> n) times with different
weights for the area expansion (Eq. 2) and seed positions (§4.1).
Then, we build an m×m similarity matrix of these shells, and then
apply the spectral clustering algorithm [Shi and Malik 2000; von
Luxburg 2007], using n as the number of clusters. The result of
the spectral clustering is n clusters each of which contains similar
shells. From each cluster, we select the representative sample that is
closest to the center of the cluster. Finally, we compute smoothing
and thickening for the selected shells and we display them to the
user.

In our current implementation, we define the similarity metric for
shells as follows. For the target triangle mesh that has k triangles,
we consider a k-dimensional binary vector {0, 1}k. We compute
this vector for each computed shell by setting the ith element as 1
if the shell contains the ith triangle, and 0 otherwise. We measure
the dissimilarity between shells by using the Hamming distance
between the corresponding vectors. Finally, we define the similarity
between shells as the dissimilarity subtracted from k. Fig. 12 shows
some examples outputs of this algorithm.
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5 Connecting the Two Parts

After generating two holders by the algorithms described in §3 and
§4, we connect these parts by adding a cylindrical rod between them.
The attachment point of the rod for the mechanical holder is set to be
where the forces were applied during measurement. The attachment
point for the free-form holder side is computed such that the rod
length is minimized. To ensure the structural strength of the rod,
we consider the bending moment at the end of the rod that is the
furthest away from the object being held. Under the Euler-Bernoulli
assumption [Umetani and Schmidt 2013], the minimum required
rod radius to hold the object can be computed as

r =

(
4

π
· ‖l×mg‖

σmax

) 1
3

, (9)

Target object

Free-form holder

Rod

Mechanical 
holder

where l is the displacement vector
(the vector between the rod end and
the center of mass), mg is the gravity
force on the object, and σmax is the
maximum tensile stress of the rod ma-
terial. In our printing setting, σmax is
between 20 – 30 MPa, obtained from
the material specifications. Consid-
ering the safety factor s, which can
be the same value in the mechanical
holder optimization (§3.2), and the worst case of the applied force
direction, we modify Eq. 9 by replacing ‖l×mg‖ with s‖l‖‖mg‖.
We also allow the user to choose a larger radius if desired.

6 Results

We use AutoConnect to create and fabricate many connectors for
many practical applications. We fabricate all our examples using
Stratasys Objet Connex 500 with Endur material. Standard shapes
are manually labeled in our examples. In Fig. 1 and Fig. 13 (a)–(f),
we connect a structured object and a free-form object, and specify a
free-motion when generating connectors. For many use cases, it is
desirable to specify a free-motion, since it allows users to attach and
detach objects easily.

We demonstrate two examples that use off-the-shelf scanning tools
to produce a connector: the car dashboard in Fig. 1 (a) and the
speaker in Fig. 13 (c). For these, we use Kinect Fusion and 123D
Catch iPhone App, respectively with only a few manual operations
(e.g., removing unnecessary parts, and smoothing noisy regions).
For 123D Catch, we use a set of photographs (∼ 40) of the object
as the input.

Sometimes, the user may want to connect two objects very firmly.
Fig. 13 (g) is an example where strong external forces can be applied
to the target objects when using this connector. For this scenario,
we do not specify any free-motions and we specify a large safety
factor. Our method generates design options by using the strap pipe
clamp, which has a very strong grip strength compared to the other
mechanical holders for cylinders.

Our method can also be applied when one side of the connected
objects is directly 3D-printed. Fig. 13 (i) shows such cases; first,
we attach a 3D-printed dragon’s head to a high-heel shoe by using
the free-form holder. Second, we attach a 3D-printable object to
a structured object by using one of the mechanical holders. We
can also connect structured-structured combinations; we show such
scenarios in Fig. 13 (h).

Performance Table 1 shows the size of the meshes, various input
parameters, and the computation times for the examples. We use

the safety factor of 5 for most examples. In some cases, we used a
higher number to be conservative. In particular, we use 50 for the
phone–bike example to force the optimization to choose the strap
pipe clamp. We also use 25 for the bunny–wall so that we can hang
objects from it (please see the video). Our optimization (Eq. 1)
takes less than 2 seconds in all the examples using a 3 GHz Intel
Core i7. The sizes of the beverage can and the belt fall outside the
range specified in the database. In these cases, we simply clamp
the corresponding parameters within the range in the database when
performing the optimization. The number of triangles used for shell
computation differs from the original input mesh if the convex hull,
uncoverable regions, or a free motion direction is specified (Eq. 7).
In all the examples, shell computation takes less than 2 minutes with
our multi-threaded implementation, and clustering the results (§4.5)
takes a fraction of a second. Before the diverse subset is visualized,
we smooth and thicken the mesh by offsetting the triangles along
their normals. This process, which we also multi-thread, takes a few
seconds to a few minutes depending on the resolution. After the
user makes the final selection, generating the print-ready, watertight
mesh can take up to a couple of hours. The print itself takes up to 5
hours depending on the size of the connector.

7 Conclusion

In this paper, we presented AutoConnect, a method to automatically
design 3D-printable connectors that are tailored to the two input
geometries and user’s specifications. Our method classifies the
target geometries into two categories, structured objects and free-
form objects, and applies different strategies to generate holders
for each of them. For structured objects, we perform force-based
optimization to predefined mechanical holders. We use a data-driven
approach to estimate the grip-strength based on real measurements.
This database, which can be augmented with simulation as well,
is made freely available as supplementary material so that other
implementations of our method do not need to recreate the database.
For free-form objects, we compute the shell of the holder with
geometry-based criterion of holdability. Finally, we show various
possible scenarios for the usage of AutoConnect, which include
mounting various objects to the desk or chair (phone, ping-pong
paddle, mug), creating phones mounts to the bike or the dashboard
of the car, and creating decorative objects such as wall mounted
bunny and a shoe dragon.

7.1 Future Work

Our method is the first solution to the novel and practical problem:
“given two geometries of physical objects, how can we generate
a functional and aesthetic connector automatically?” Since this
problem is application-driven, in contrast to many geometric topics
such as mesh fairing, it is difficult to mathematically formulate
a simple objective. Functionality is validated both geometrically
(the objects are held) and physically (the connectors do not slip or
break) and is demonstrated by showing various practical examples.
Aesthetics are addressed by incorporating stylistic considerations
into the algorithm (such as symmetry-based priority). These are
inspired by observing real-world connector designs. Aesthetics are
also addressed by presenting several design variations from which
the user can choose. Considering not only these but also broader
aspects of human centered design in the solution is an important
future work.

Currently we use only six models in our parametric mechanical hold-
ers database (Fig. 4). This limits variation of possible designs, but in
the future it is easy to add more parametric holders to build a larger
database, or even use a web-based service, where dedicated users
can upload their holder designs. In order to add such a design to the
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(a) Mug holder at desk edges (b) Mobile phone holder on the wall

Speaker
Connector

Shelf

(c) Speaker hanger for a shelf (d) Mobile phone attacher for guitar performance

(f) Table-tennis paddle holder for table legs

(g) Mobile phone mounter for a bike handle

(e) Game controller holder on a chair arm

(h) Examples of using mechanical holders for both sides (i) Examples of attaching printed objects to physical objects

Figure 13: Applications of AutoConnect. In examples (a)–(g), we connect a structured object and a free-form object. Our method can also be
used for other cases such as (h) the case that both objects are structured, and (i) the case that one side is directly printed.

database, the design needs to be parametric, and the grip-strength
needs to be measured (or simulated) and stored for various param-
eter values. The lookup and interpolation-based approach during
optimization of the mechanical holders sidesteps the complexity of
real-time simulation with real data and measurement. On the other
hand, using explicit simulation does not require pre-processing. In
the future, it would be interesting to combine the two approaches as
they need not be mutually exclusive.

When the mass of the object is too large or when the user positions
the object too far away, creating a large torque, the parameter op-
timization (Eq. 1) fails because there is no feasible solution. Also,
some of our assumptions (e.g., both free-form and mechanical hold-
ers are infinitely strong and never break) may become invalid. Which
of these becomes invalid first depends largely on the example, and
automatically determining this ordering is an interesting direction
for future research. Other parts of the pipeline can also fail in some
situations, such as when the user places the objects on top of each
other so that the objects are intersecting. A graceful way to handle
these errors would be an important future work.

As most mechanical holders are easy to detach (e.g., a toggle clamp
has a handle for detaching), we do not consider the difficulty of
detaching in our optimization. However, since some holders, such
as the snap pipe clamp, must be difficult to move but easy to detach,
it would be interesting to find a way to include such conflicting
requirements in our optimization. We also assume currently that
both the target objects and the printed connectors do not break. In
the future, we would like to consider both soft deformation and
structural strength of the connectors.

For free-form holders, when the target shape is highly complex
or includes many concave parts, such as in the Stanford dragon’s
mouth or legs or the armadillo model, our method can generate a
complex holder that is difficult to attach/detach because of blocking.
In this case, our split-and-verify algorithm (§4.4) often fails, or
needs many splitting planes. In most practical scenarios, this is not a
problem, as many artificial artifacts have nearly convex shapes, and
can easily achieve attachability/detachability using a single splitting.
In addition, the ability to use the convex hull of the target shape can
provide some solution to this problem.
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Table 1: Performance numbers for the examples. “Mass” is the mass of the handheld object. “Grip opt.” is the time in seconds to compute
Eq. 1. The number of triangles used for shell computation differs from the original input mesh if the convex hull, uncoverable regions, or a free
motion direction is specified (Eq. 7). “#cand.” is the number of candidate holders generated (Fig. 12), which takes “shell comp.” seconds to
complete. Some examples contain only a mechanical holder or only a free-form holder.

mass (kg) safety factor grip opt. (s) #triangles (orig.) #cand. shell comp. (s) clust. (s) conv. hull uncov. regions free dir.

phone–car 0.112 10 0.117 1836 (2600) 32 21.8 0.097 no yes yes
mug–chair-arm 0.320 5 0.365 1646 (10000) 48 34.8 0.143 yes no yes
mug–desk-edge 0.160 5 0.185 2985 (10000) 48 63.4 0.153 yes no yes

phone–wall 0.112 5 0.176 1921 (2600) 32 20.3 0.102 no yes yes
speaker–shelf 0.300 5 0.096 2837 (16000) 40 78.1 0.126 yes no yes
phone–guitar 0.112 5 0.178 1836 (2600) 32 23.8 0.088 no yes yes
phone–bike 0.112 50 0.793 2000 (2600) 40 25.7 0.122 no yes no

xbox–chair-arm 0.300 5 0.366 1407 (9377) 24 22.4 0.073 yes no yes
paddle–deskleg 0.180 5 0.691 5471 (7184) 40 58.9 0.130 no yes yes

shoe–dragon - - - 9998 (9998) 32 85.6 0.109 no no no
bunny–glass 0.050 25 0.561 - - - - - - -

light-bike 0.150 10 1.677 - - - - - - -
can–deskleg 0.300 5 1.278 - - - - - - -

can–belt 0.300 5 1.542 - - - - - - -

Our work lies in the relatively unexplored research domain of au-
tomatic shape design for end-users using high-level specifications.
In this context, we believe that many follow-up works would be
possible. For example, it would be interesting to allow more user
input either in the form of more declarative constraints such as where
to position the cutting planes, where to place the connecting rod, or
how to divide the connector.
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CALÌ, J., CALIAN, D. A., AMATI, C., KLEINBERGER, R., STEED,
A., KAUTZ, J., AND WEYRICH, T. 2012. 3D-printing of non-
assembly, articulated models. ACM Trans. Graph. 31, 6 (Nov.),
130:1–130:8.

CEYLAN, D., LI, W., MITRA, N. J., AGRAWALA, M., AND
PAULY, M. 2013. Designing and fabricating mechanical au-
tomata from mocap sequences. ACM Trans. Graph. 32, 6 (Nov.),
186:1–186:11.

CHEN, X., ZHENG, C., XU, W., AND ZHOU, K. 2014. An
asymptotic numerical method for inverse elastic shape design.
ACM Trans. Graph. 33, 4 (July), 95:1–95:11.

COROS, S., THOMASZEWSKI, B., NORIS, G., SUEDA, S., FOR-
BERG, M., SUMNER, R. W., MATUSIK, W., AND BICKEL, B.
2013. Computational design of mechanical characters. ACM
Trans. Graph. 32, 4 (July), 83:1–83:12.

DASSAULT SYSTÈMES. Solidworks. http://www.solidworks.com/.

FISH, N., AVERKIOU, M., VAN KAICK, O., SORKINE-HORNUNG,
O., COHEN-OR, D., AND MITRA, N. J. 2014. Meta-
representation of shape families. ACM Trans. Graph. 33, 4 (July),
34:1–34:11.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D. 2009.
iwires: An analyze-and-edit approach to shape manipulation.
ACM Trans. Graph. 28, 3 (July), 33:1–33:10.

GELFAND, N., AND GUIBAS, L. J. 2004. Shape segmentation
using local slippage analysis. In Proc. 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, 214–223.

GELFAND, N., IKEMOTO, L., RUSINKIEWICZ, S., AND LEVOY,
M. 2003. Geometrically stable sampling for the icp algorithm.
In Int. Conf. 3-D Digital Imaging and Modeling, 260–267.

HIRUKAWA, H., MATSUI, T., AND TAKASE, K. 1994. Auto-
matic determination of possible velocity and applicable force of
frictionless objects in contact from a geometric model. IEEE
Transactions on Robotics and Automation 10, 3 (Jun), 309–322.

HU, R., LI, H., ZHANG, H., AND COHEN-OR, D. 2014. Approxi-
mate pyramidal shape decomposition. ACM Trans. Graph. 33, 6
(Nov.), 213:1–213:12.

231:10        •        Y. Koyama et al.

ACM Transactions on Graphics, Vol. 34, No. 6, Article 231, Publication Date: November 2015



KOO, B., LI, W., YAO, J., AGRAWALA, M., AND MITRA, N. J.
2014. Creating works-like prototypes of mechanical objects.
ACM Trans. Graph. 33, 6 (Nov.), 217:1–217:9.

LI, H., ALHASHIM, I., ZHANG, H., SHAMIR, A., AND COHEN-
OR, D. 2012. Stackabilization. ACM Trans. Graph. 31, 6 (Nov.),
158:1–158:9.

LU, L., SHARF, A., ZHAO, H., WEI, Y., FAN, Q., CHEN, X.,
SAVOYE, Y., TU, C., COHEN-OR, D., AND CHEN, B. 2014.
Build-to-last: Strength to weight 3D printed objects. ACM Trans.
Graph. 33, 4 (July), 97:1–97:10.

MITRA, N. J., GUIBAS, L. J., AND PAULY, M. 2006. Partial and
approximate symmetry detection for 3D geometry. ACM Trans.
Graph. 25, 3 (July), 560–568.

PODOLAK, J., SHILANE, P., GOLOVINSKIY, A., RUSINKIEWICZ,
S., AND FUNKHOUSER, T. 2006. A planar-reflective symmetry
transform for 3D shapes. ACM Trans. Graph. 25, 3 (July), 549–
559.

POWELL, M. J. D. 1998. Direct search algorithms for optimization
calculations. Acta Numerica 7 (1), 287–336.
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