
RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design

ALLAN ZHAO, JIE XU, MINA KONAKOVIĆ-LUKOVIĆ, JOSEPHINE HUGHES, ANDREW SPIELBERG,
DANIELA RUS, and WOJCIECH MATUSIK,Massachusetts Institute of Technology

Input terrains

Input components

Grammar generated structures Optimized robot structure and controller

graph
grammar

graph
heuristic
search

MPC

Fig. 1. The input to our system is a set of base robot components, such as links, joints, and end structures, and at least one terrain, such as stepped terrain or
terrain with wall obstacles. RoboGrammar provides a recursive graph grammar to efficiently generate hundreds of thousands of robot structures built with the
given components. We then use Graph Heuristic Search coupled with model predictive control (MPC) to facilitate exploration of the large design space, and
identify high performing examples for a given terrain. Our approach enables co-optimization of both robot structures and controllers.

We present RoboGrammar, a fully automated approach for generating op-
timized robot structures to traverse given terrains. In this framework, we
represent each robot design as a graph, and use a graph grammar to express
possible arrangements of physical robot assemblies. Each robot design can
then be expressed as a sequence of grammar rules. Using only a small set
of rules our grammar can describe hundreds of thousands of possible robot
designs. The construction of the grammar limits the design space to designs
that can be fabricated. For a given input terrain, the design space is searched
to find the top performing robots and their corresponding controllers. We
introduce Graph Heuristic Search – a novel method for efficient search of
combinatorial design spaces. In Graph Heuristic Search, we explore the
design space while simultaneously learning a function that maps incomplete
designs (e.g., nodes in the combinatorial search tree) to the best performance
values that can be achieved by expanding these incomplete designs. Graph
Heuristic Search prioritizes exploration of the most promising branches of
the design space. To test our method we optimize robots for a number of
challenging and varied terrains. We demonstrate that RoboGrammar can
successfully generate nontrivial robots that are optimized for a single terrain
or a combination of terrains.

CCS Concepts: • Computing methodologies→ Procedural animation;
Evolutionary robotics; Search methodologies.

Additional Key Words and Phrases: graph grammars, graph neural networks

Authors’ address: Allan Zhao; Jie Xu; Mina Konaković-Luković; Josephine Hughes; An-
drew Spielberg; Daniela Rus; Wojciech Matusik, Massachusetts Institute of Technology.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
0730-0301/2020/12-ART188
https://doi.org/10.1145/3414685.3417831

ACM Reference Format:
Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew
Spielberg, Daniela Rus, and Wojciech Matusik. 2020. RoboGrammar: Graph
Grammar for Terrain-Optimized Robot Design. ACM Trans. Graph. 39, 6, Ar-
ticle 188 (December 2020), 16 pages. https://doi.org/10.1145/3414685.3417831

1 INTRODUCTION
The automation and understanding of robot design, and the inter-
play between the structure and controller of a robot has long been a
key research question [Hiller and Lipson 2011]. This is a particularly
challenging research problem as the design space is vast and in-
tractable and there are limited tools for automatically and efficiently
exploring it. To enable large scale search and optimization of robots
we need new approaches for structuring this design space, tools for
searching it efficiently, and simulations for exploring and evaluating
many thousands of designs [Pugh and Martinoli 2007]. Importantly,
the tools developed must allow for the emergence of imaginative,
or even inventive solutions, which diverge from those that manifest
from more traditional design approaches [Pollack et al. 2003].
To address this challenge, we introduce a simulation-based sys-

tem for simultaneously optimizing the physical structures and con-
trollers of robots. The goal of the system is to take a set of user-
specified primitive components and generate an optimal robot struc-
ture and controller for traversing a given terrain. The primitive
components include different joint types, links, and wheels, each
with user prescribed attributes such as rotational angles and axes,
sizes, and weights. The user can specify the makeup of the primi-
tives to match what physical components they have available. In the
RoboGrammar framework each robot is represented by a graph. To
efficiently search the design space of robot graphs, we introduce a
recursive graph grammar that emphasizes mobility and fabricability.

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417831
https://doi.org/10.1145/3414685.3417831


188:2 • Zhao et al.

Our grammar is expressive andmaps realistic components to fabrica-
ble configurations, and can adapt to changing component primitives.
Furthermore, we couple the grammar with physical simulation and
controller synthesis, allowing us to rapidly create, optimize, and test
robot designs. We use model predictive control (MPC) to provide
a stochastic approach to controller learning. In order to make the
search of a large design space efficient, we introduce a novel Graph
Heuristic Search algorithm which generalizes the knowledge of
explored designs to predict performance of unexplored branches of
the search space. Specifically, our search algorithm takes a learning-
based approach inspired by reinforcement learning, iteratively ex-
ploring a large space of robot designs for a given task, and learning
a heuristic function to gradually steer that search toward optimal
designs. Our learning model takes a neural-based approach, exploit-
ing a graph neural network architecture to provide a fast method
for approximating the performance metrics of best designs.

In summary, this paper presents the following key contributions:

• A recursive graph grammar that enables the generation of a
wide range of inherently fabricable robot forms, which can
be built in their simulated configurations.
• A Graph Heuristic Search method for efficiently searching
the design space described with the grammar. This is bench-
marked against alternatives includingMonte Carlo tree search
and random search.
• A demonstration of terrain-driven optimization using MPC
based stochastic evaluation of each proposed design.We show
the variety of innovative robot designs that are obtained
across six different terrains. In addition, our approach identi-
fies a number of high-performing robots for a single terrain
or combination of terrains.

The following section of this paper reviews related work present-
ing current state-of-the-art research. In Section 3 we provide an
overview of the different systems and algorithms used to enable the
grammar-driven exploration and optimization of robots. Section 4
focuses on the graph grammar which is developed to express a wide
range of different robots. We detail the components of the grammar,
and the rules enabling the creation of innovative robot structures.
In order to evaluate the performance of robots and find controllers
we use model predictive control (MPC) with integral control and
low-pass filtering (Section 5). In Section 6 we present the optimiza-
tion process, providing details of the Graph Heuristic Search and
the Monte Carlo tree search implemented for sake of comparison.
The results are presented in Section 9, showing best-performing
designs generated using RoboGrammar for six different terrains, as
well as combinations of terrains. We conclude with a discussion
of the limitations of our approach and identify avenues for future
work.

2 RELATED WORK
In this section we review techniques for generative design of robots,
and existing state of the art work relating to generative design,
graph grammars, and controller optimization.

2.1 Generative design for robotics
The development of effective generative design tools for robotics, in-
cluding search and evolutionary design algorithms, is a key research
challenge [McCormack et al. 2004]. We review several approaches,
detailing the various advantages they offer and the applications for
which they are best suited.

Many recent approaches use deep learning which provides power-
ful tools for generative design. [Pathak et al. 2019] develop amodular
co-evolution strategy in which a collection of primitive agents learn
to dynamically self-assemble into a composite body while also learn-
ing to coordinate their behavior to control the body. However, their
method results in only simple robots with a few components, and
assumes physically implausible reconfigurability. Reinforcement
learning has also been applied in order to continually improve agent
design [Ha 2018]. In their design framework, both the environment
and robot are altered to enable the agent to learn more effectively.
Deep learning methods are particularly suited to co-optimization
of the robot body and controller [Schaff et al. 2019], and have the
potential to offer improved performance. Within the domain of soft
robots, there has also been an example of end-to-end controller and
structure design using deep latent representations [Spielberg et al.
2019].
Formal Design Methods are an alternative approach which use a

model based approach to design robots and their controllers. Jing
et al. [2018] demonstrate the formal approach using a large de-
sign library and bespoke tools to configure modular robots. The
arrangements of modular robots are particularly suited for these
methods [Bi and Zhang 2001; Chen and Burdick 1995]. Suchmethods
can require significant hand crafting and do not scale or generalize
well.

To search a parameterized design space, in our case a graph gram-
mar, efficient search algorithms are required. Genetic algorithms
(GAs) iteratively improve designs through a process inspired by nat-
ural evolution [Bongard 2013]. Applied to real-world systems [Brod-
beck et al. 2015], GAs transfer positive ‘phenotypes’ between gen-
erations of robots, and allow the development of large populations
of robot designs [Watson et al. 2002]. Sims [1994] evolves creatures
optimized for movement in a three-dimensional environment using
a GA. Creatures are represented as directed graphs, which may
include multi-edges. Each creature’s kinematic tree is determined
by tracing unique paths through its directed graph. This representa-
tion encodes symmetry and repetition in the graph itself, leading to
more biologically plausible forms. It is not clear how the creatures
translate into robotic components, however. The effect of terrain
on optimal morphology is also not addressed, as all creatures are
simulated on a flat surface or in fluid. GAs have been widely used
within the robotics community with demonstrable success [Koza
1995], however, in some cases they do not scale well and can have a
high sensitivity to input parameters [Sivanandam and Deepa 2008].
They can also be sensitive to parameters such as population size
and rate of mutations or crossovers, and there is little evidence
demonstrating convergence to global or even local minima.
There are also a number of hybrid approaches which combine

multiple methods. Wang et al. [2019b] propose Neural Graph Evo-
lution, an evolutionary search in graph space, which iteratively

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design • 188:3

evolves graph structures using simple mutation primitives. Wang
et al. [2019a] pairs the generation of environments with the opti-
mization of agents. Their method simultaneously explores many
different paths through the space of possible problems and solutions,
utilizing neural networks and optimization techniques. However,
without a judicious grammar to help constrain the search, their
approach has only been shown to scale to robot designs with a
few joint and link components. Further, their reliance on a genetic
algorithm to search over the design space has the same pitfalls as
discussed previously.

In this paper we explore two candidates for grammar-based gen-
erative robot co-optimization. First, Monte Carlo tree search (MCTS)
is a stochastic search algorithm widely used across a variety of
problem domains [Browne et al. 2012]. It has been applied to game
based decision making, notably for playing Go [Gelly et al. 2012], as
well as robot optimization and planning [Munos et al. 2014; Nguyen
et al. 2017]. The algorithm identifies the most promising moves,
expanding the search tree based on random sampling of the search
space. Schadd et al. [2008] have shown the ability to extend MCTS
to a single-player scenario, which is the case when searching over
a grammar. Despite its wide applicability, MCTS suffers from low
searching efficiency on complex robot design problems. We there-
fore use it as a baseline. Our core algorithmic contribution is an
novel search optimization strategy, referred to as Graph Heuristic
Search (GHS). GHS generalizes the knowledge from explored designs
to untested designs to improve searching efficiency. By learning an
estimator of performance, a heuristic can guide the search, helping
to find optimal solutions faster. We apply deep learning, specifically
graph neural networks (GNNs), to learn this heuristic. GNNs are
particularly suited for learning on topological or structured inputs,
such as robot designs [Lederman et al. 2018]. A variety of GNN
models exist, but the differentiable-pooling model [Ying et al. 2018]
is of particular interest for grammar based exploration.

2.2 Graph grammars
In this work, we examine recursive graph grammars as a method for
generating expressive search spaces that are restricted to feasible
designs with user-defined components. Formal grammars, sets of
production rules for creating valid strings from a language’s alpha-
bet, are widely used for linguistics and natural language process-
ing [Chomsky 1956]. This concept can be extended to graph gram-
mars, which define sets of valid graphs rather than linear sequences.
For the purposes of generative design, the graphs usually describe
spatial configurations of mechanical components. Early examples
include graph grammars for epicyclic gear train systems [Schmidt
et al. 1999] and Meccano®-based machines [Schmidt and Cagan
1997]. In robotics, graph grammars have been applied to modeling
self-assembly of robotic systems [Klavins et al. 2004] as well as the
structure of robot interactions and control laws [Smith et al. 2009].
More recently, a graph grammar has been developed to describe
the physical structure and also the fabrication process for furni-
ture [Lau et al. 2011]. This grammar allows complex 3D furniture
models to be expressed as manufacturable parts and connectors.
Scalability and applicability to physical systems are key advantages
of graph grammars [Hornby and Pollack 2001]. They provide a way

of parameterizing the search space to prevent intractability, while
allowing many different structures to emerge.
Most analogous to our work is Stöckli and Shea [2015], which

describes passive dynamic brachiating robots with a graph grammar
and evaluates them using dynamic simulation. Their work showed
the power of graph grammars in automated robot design, with a
wide range of robots emerging from a relatively limited grammar.
Their work did not examine the expensive control synthesis aspect
(as well as the resulting co-optimization problem) and focused solely
on 2D systems with swinging locomotion. In our scenario, simula-
tion and robot evaluation is far more complex, and requires a more
scalable search algorithm.

2.3 Grammar-based procedural modeling
Shape grammars use graphical primitives to generate complex geo-
metric shapes. Initially introduced by Stiny and Gips [1971], shape
grammars have been used in architectural design [Downing and
Flemming 1981; Duarte 2005; Stiny and Mitchell 1978]. A simpli-
fied version of shape grammars which is more popular in computer
graphics applications is the set grammar [Stiny 1982]. Grammars for
modeling streets and buildings have been proposed in [Jesus et al.
2016; Krecklau et al. 2010; Müller et al. 2006; Parish and Müller 2001;
Wonka et al. 2003]. Van Diepen and Shea [2019] apply shape gram-
mars to soft robot design, using predetermined actuation patterns
instead of full control synthesis.
A majority of high-performing grammars are still manually de-

signed by experts. Several works propose automating grammar
creation based on a set of example designs [Bokeloh et al. 2010;
Št’ava et al. 2010; Wu et al. 2014]. Lipp et al. [2008] develop a frame-
work for interactive grammar editing. Dang et al. [2015] expand
shape grammars with probability density functions defined through
an interactive design exploration tool to obtain designs with higher
preference score. A probabilistic grammar is also used in [Liu et al.
2014] to parse unseen scenes and assign segmentation, labels, and
object hierarchies.

2.4 Control methods and approaches
In addition to generating the structure of the robot, some method
of generating appropriate controls is necessary. To allow exploring
many different robot structures across different terrains the control
approach must be highly efficient and robust.
Model predictive control (MPC) is a family of control algorithms

used widely for robotics and process control [Garcia et al. 1989].
A model of the system is used to make predictions about future
behaviour, with online optimization used to find optimal controls
to meet a desired output. Within robotics it is widely used to de-
velop trajectory tracking controllers [Klančar and Škrjanc 2007;
Kuhne et al. 2004]. There are many variants of MPC suitable for
different settings. When no derivatives of the dynamics are avail-
able, for example in a non-differentiable simulator, sampling based
MPC methods such as model predictive path integral control (MPPI)
[Williams et al. 2016] are typically used. Low-pass filtering has
been shown to be helpful in other simulation-based applications of
MPC [Lowrey et al. 2018].

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



188:4 • Zhao et al.

Another increasingly popular control approach is the use of rein-
forcement learning. Stochastic policy gradient reinforcement learn-
ing can enable a 3D biped to walk over rugged terrain [Tedrake
et al. 2004]. Peng et al. [2017] demonstrate how hierarchical deep
reinforcement learning can learn dynamic locomotion skills on
challenging terrains with a limited amount of prior knowledge. Re-
inforcement learning is characterized by the need for large amounts
of data, which can hamper efforts to wrap control synthesis in an
outer design search loop.

3 SYSTEM OVERVIEW
RoboGrammar consists of three main components listed below. Fig-
ure 1 provides a graphical overview.

First, a recursive graph grammar forms the core of our approach
to optimizing the structure of robots (Section 4). We use a graph rep-
resentation for robot structure and define the set of components and
grammar rules which can be used to assemble robots. Our grammar
encodes simple and intuitive rules in order to efficiently generate
interesting, feasible robot designs during the search process.
Secondly, each design generated by the grammar is evaluated

using the model predictive control (MPC) algorithm described in
Section 5. MPC aims to rapidly find a stable, periodic gait. The
objective function optimized by MPC rewards high forward speed
and maintaining the initial orientation.

The third component of our system is the novel Graph Heuristic
Search (GHS) algorithm described in Section 6. GHS searches over
the design space defined by the grammar to efficiently identify opti-
mal robots and controllers. The algorithm exploits a graph neural
network-based heuristic function, whose architecture is analogous
to the graph-like structure of rigid robots. The heuristic function is
learned as the search progresses using ground-truth data from the
MPC-based evaluations.
We describe how users specify problems in our framework in

Section 7, and provide implementation details in Section 8. Differ-
ent terrains are used to embody objective functions for which the
robots are optimized. We demonstrate our system on single and
multi-objective optimization problems, and showcase our results in
Section 9.

4 ROBOT GRAMMAR
Starting with a given set of robot components, our goal is to effi-
ciently explore over the space of robots that can be formed from
these components. However, this space can be combinatorially large
and primarily composed of nonsensical designs. In order to make
the search more tractable, we constrain it with a bio-inspired graph
grammar. The structural rules are inspired by arthropods, which
make up a majority of known animal species. Note that we only
use bio-inspiration as a starting point. We choose to include wheels,
which enable even more forms of locomotion at the cost of only one
additional rule. Our grammar includes many familiar forms, while
allowing novel designs to emerge.

4.1 Robot representation
In order to enable robot design with graph grammars, we represent
robots in the form of directed acyclic graphs. Each node of the graph

connector

mount part

limb segment

body segment roll
joint

knee
joint

body segment

connector connector

mount part

limb segment

knee
joint

connector

Fig. 2. An example of a kinematic tree (top) with the corresponding robot
graph (bottom). To enforce symmetry in leg pairs, after adding nodes for
connectors on both sides of the body, both legs of one pair are defined in
one branch of the graph.

represents a physically realizable component. We consider robot
structures to consist of body segments and limbs, with optional
head and tail. The structures are composed of rigid links and rigid
or articulated joints. Each body segment can have at most one pair
of legs attached to it.
As our grammar is based on arthropods, it only describes sym-

metrical robots. Legs are always added in pairs and each pair has
identical leg structure on both sides. Exceptions to this rule are the
optional head and tail limbs, which are individually formed and are
not necessarily symmetrical. We encode symmetry and repetition
by representing each pair of legs with a single branch in the robot
graph (see Figure 2). This scheme helps simplify rule definitions in
the grammar.

After deriving a full robot graph, we convert it to a kinematic tree
for efficient simulation. Note that all robots in our grammar, as well
as the vast majority of animals and existing robots have kinematics
that can be described by a tree. A new robot component is added per
graph node, for each unique path connecting the tree root and that
node. Finding the root node involves selecting an arbitrary node and
following edges backwards until a node with no incoming edges is
reached. Each graph node may produce multiple components in the
kinematic tree due to our symmetry-enforcing scheme.

4.2 Grammar definitions
We define a recursive graph grammar G as a tuple

G = (N,T,A,R, S)

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design • 188:5

S H

Body structure

B T

T TY B

Adding appendage to body

B U

M

E

B U

r₁:

r₂:

r₃:

r₄:

Appendages

E ELJr₅:

r₆: T

r₇:

E

H E

start symbol

mount part
connector

head part

tail part

body joint
body part

body link

limb end
limb joint
limb link

CC

M

M

S
H
Y
B
T

Legend

U
C
M
E

L

Grammar structural rules 

J
C

C

Fig. 3. A list of structural rules of our robot grammar. Here
S , H , Y , B,T ,U , E , J , L ∈ N are non-terminal symbols. Rule r1
initializes the body structure, while r2 can be used to extend the body. Note
that each body segment U can have at most one pair of limbs attached to
it. Rule r3 enforces symmetry of the limb pairs, and rule r4 allows body
segments without limbs. Rule r5 serves for extending the limbs, and r6 and
r7 for adding back and front limbs.

where N and T are sets of non-terminal and terminal symbols re-
spectively, A is a set of attributes for certain terminal symbols, R
are production rules and S ∈ N is a starting symbol. Non-terminal
symbols are temporary graph nodes that help us construct different
body and leg parts. Terminal symbols are final graph nodes which
represent physical robot components (e.g., links, joints, wheels, etc.).
We refer to graphs with only terminal symbols as “complete” robot
designs, and all other graphs as “partial” robot designs. In addition,
we assign attributes to several terminal symbols. The attributes
define the initial state of the robot by determining initial lengths
and angles between robot parts. Each production rule from R has
the form:

Q W

where Q ∈ N is a non-terminal symbol, andW is a graph that has at
least one node, no matter if it is a non-terminal or a terminal symbol
(see Subsection 4.3 for more details). A production rule is applied to
a current robot graph by detecting an occurrence of Q to replace
withW . Since our grammar is recursive, a non-terminal symbol Q
can appear again on the right hand-side of the rule as part of W . A
recursive grammar allows us to concisely represent a wide variety
of structures, including complex body shapes with numerous limbs
such as a centipede.

body link
15cm

limb link
15cm

limb link
10cm

rigid joint

rigid joint

roll joint
θr∈[0°,360°]

U

E

T

Y

H

M

C

L

J

twist joint
θr∈[0°,360°]

roll joint
θr∈[0°,360°]

r₈

θr

θr

θr

θr

θi

θr

θi

knee joint
θr∈[0°,180°]
θi∈{60°,120°}

elbow joint
θr∈[0°,180°]
θi∈{-90°,90°}

r₁₀r₉

connector

mount link

wheel

r₁₁
r₁₂

r₁₃

r₁₄
r₁₅ r₁₆

r₁₇ r₁₈

r₁₉

r₂₀

r₂₁
r₂₂

r₂₃

Fig. 4. Component-based rules of the robot grammar. Initial-pose angle θi
and rotational range angle θr are attributes of joints. Adding, removing, or
editing any link or joint component is straightforward. Note that we do
not use a physical representation for the head, tail, hands, feet, and other
types of end components for simplicity. However, the grammar can easily
incorporate any new component representing an end structure.

4.3 Production rules and robot components
Here we present the production rules used to create robot struc-
tures. We divide our robot grammar rules into two main categories:
structural rules and component-based rules. Structural rules serve to
construct a physically realistic topology for the robot and define
the number of body and limb segments. Every structural rule has at
least one non-terminal symbol on the right-hand side. The list of
these rules is given in Figure 3.
Component-based rules replace non-terminal symbols with ter-

minal symbols representing robot components. Graph nodes with
terminal symbols cannot be replaced. Several terminal symbols have
assigned attributes. Attribute θr ∈ A limits the rotational range of a
joint. Attribute θi ∈ A determines the initial position of the links
connected with the corresponding joint and it can be chosen from
a given set of possible values. All the angle values θi are defined
relative to the position of the previous robot component. A list of the
component-based rules in our framework is presented in Figure 4.
Note that thanks to our grammar-based approach and the set of
rules we propose, the list of components used for robot construction
can be easily adapted. There is no requirement that structural rules
be applied before component-based rules or vice versa.
Our recursive grammar is designed in a way that allows for a

potentially infinite number of legs and body segments. In order to

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



188:6 • Zhao et al.

S H B Tr₁ r₂

TY BH B
r₃ , r₃

U

M

E

CC

TYH U

M

E

CC

U

M

E

CC

TYH U

M

CC

L

J

E

L

J

r₅,r₅

r₂₁,r₂₁,

U

M

CC

Y U

M

CC

L

J

L

J

r₈,r₈,r₁₂,
r₂₂,r₂₃ 4 x r₁₈,

2 x r₁₉,
2 x r₁₆,
2 x r₁₀

Fig. 5. A derivation sequence for a Simple Walker robot generated with our grammar. Derivation begins with the start symbol S , then creates the body and
extends it with rules r1,r2 respectively. Legs are added on both body segments with rule r3 applied twice. Both pairs of legs are extended, adding additional
sets of joints and links, with r5. For the Simple Walker, end structures are not used, hence we remove them with r21,r22, and r23. Finally, terminal components
are added for each segment of the robot, following the rules from Figure 4.

limit the design space, our implementation uses a recursion counter.
The recursion counter counts the total number of derivation steps.
We set the maximum as 40 in our experiments. Increasing this
parameter would allow for creation of more complex designs, while
also increasing algorithm run time.
An example robot derived from grammar G, along with the se-

quence of production rules applied, is shown in Figure 5. More
interesting examples generated with our grammar are presented in
Figure 6.

5 SIMULATION & CONTROL
Here, we describe our method for simulating and controlling gener-
ated designs. This is necessary both for co-optimizing designs and
controllers, as well as evaluating the quality of generated designs.

5.1 Simulation
Robot performance on a given task is evaluated using rigid body
dynamics simulation. The robots are modeled as articulated rigid
bodies using an efficient recursive formulation based on Feather-
stone’s algorithm [Featherstone 1983]. This recursive formulation
reduces the complexity of the equations of motion, providing scala-
bility and numerical stability. Collisions between the robot and the
environment as well as between different rigid components of the
robot (self-collision) are fully modeled. Graphs describing robots
that self-collide in the initial configuration are discarded. Wheels
are velocity-controlled, while all other joints are position-controlled.
Our simulation is implemented using the Bullet Physics library
[Coumans 2015], which is widely used in robotics.

5.2 Model Predictive Control
We generate optimized control inputs for each design using model
predictive control, specifically the MPPI algorithm [Lowrey et al.
2018]. MPPI was chosen because it does not rely on derivatives and is
relatively simple to implement. Our MPC implementation maintains
a sliding windowU of control inputsH time steps long, representing
the “best” control inputs found so far. Each iteration begins by
sampling K perturbed sequences of control inputs based onU , and

applying each sequence of control inputs to a separate instance of the
simulation. A new sequenceU is then computed as a weighted sum
of the perturbed sequences, with each sequence’s weight depending
on the discounted sum of rewards for that simulation. The first
control input of U is appended to the optimized control sequence,
which is the output of the algorithm.U is shifted forward one time
step to prepare for the next iteration, filling with zeroes as necessary.
The algorithm repeats until an optimized control sequence of length
T (the episode length) is obtained. To take advantage of multiple
CPU cores, we run the simulation instances in parallel using a thread
pooling library.

Note that each MPC time step corresponds to multiple time steps
in simulation, with the ratio being the control interval. Control inputs
are repeated for the control interval, reducing the number of MPC
time steps necessary. This reduces computation time significantly
without noticeably degrading robot performance.

An outline of our MPPI implementation is given in Algorithm 1.

Algorithm 1 Model Predictive Control based on MPPI
Inputs: Episode lengthT , number of samplesK , horizonH , initial
state s0, initial input sequenceU = [u0,u1, . . .uH−1], simulation
dynamics f .
Output: The optimal control input sequence [a0,a1, . . . aT ].
for t ← 0 to T − 1 do

for k ← 1 to K do
Sample input sequenceUk based onU .
Apply inputsUk starting at st , yielding return rk .

end for
for k ← 1 to K do
wk ← eκ(rk−maxl rl )

end for
U ←

∑K
k=1Uk

wk∑K
l=1wl

at ← u0
U ← [u1, . . .uH−1, 0]
st+1 ← f (st ,at )

end for

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design • 188:7

Fig. 6. Designs generated with RoboGrammar that appear during the search process for various terrains. Further optimization is necessary to identify the best
performing ones for a given task.

5.2.1 Sampling. Careful design of the sampling distribution is key
to achieving high MPC sample efficiency. Input sequencesUk are
matrices where each entry is sampled from an independent normal
distribution. The parameters of the distribution vary depending on
the type of sample: warm-start or history.

Half of the samples are warm-start samples, whose distribution
is centered on the input sequence U from the previous iteration
shifted forwards by one step. Their standard deviation is σ1.
As we expect many high-performing gaits to be periodic, the

remaining samples are history samples. They are sampled from a
normal distributionwhosemean is the lastM control inputs repeated

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



188:8 • Zhao et al.

until the MPC horizon.M varies per sample, and ranges from H/2
to H . Their standard deviation is σ2.

Combining the two different types of samples enablesMPC to gen-
erate lifelike, periodic gaits while reacting to obstacles and changing
terrain conditions.

6 SEARCH & OPTIMIZATION
Our grammar forms the front end of the RoboGrammar system,
constraining the search space of all robotic structures to a tractable
and meaningful subset. Next, we describe the search and optimiza-
tion algorithms that efficiently search for high-performing designs
and controllers, exploiting the reduced search space this grammar
provides. Here, we present two search algorithms: our novel Graph
Heuristic Search, and our variant of Monte Carlo tree search, which
serves as a baseline.

6.1 Graph Heuristic Search
Our heuristic search algorithm is learning-based, using a learned
heuristic function to inform and accelerate the search of the design
space. This heuristic takes the form V (д) : (V, E) → R. The input
to the function is a graph representing a partial robot design, where
some nodes correspond to non-terminal symbols. The partial de-
sign may be expanded into one of many complete designs which
have only terminal symbols. The function V (д) aims to outputs the
highest achievable performance across all of these complete designs.
Our search algorithm is agnostic to the model used for the heuristic,
and thus we describe it in general terms. In practice, we take a
deep-learning-based approach and use graph neural networks to
create our learnable heuristic.

6.1.1 Search Algorithm. Our Graph Heuristic Search algorithm
works by interleaving a design phase (in which a candidate robot is
sampled, guided by our heuristic function), an evaluation phase (in
which the candidate robot is evaluated in simulation), and a learning
phase (in which the heuristic function is improved based on the
simulated data). These three phases are repeated over N episodes, or
until they converge on an optimal design. The algorithm is described
in Alg. 2.

Design Phase. During the design phase,K possible candidate robot
designs are generated and one of them is selected for evaluation.
Each design is generated by the following procedure. Starting from
a partial robot design s0, composed solely of the initial start symbol
(s0 := S), production rules of the grammar are iteratively applied
to the partial robot design until it contains only terminal symbols.
The selection of production rules is inspired by Q-learning [Norvig
and Russell 2002] and follows an ϵ-greedy approach. Given a partial
robot design sl after l production rules have been applied, the l + 1th
rule al+1 is selected as follows. With probability ϵ , a random rule is
applied from the set of possible rules. Otherwise, with probability
(1 − ϵ), the rule that leads to the design with the highest heuristic
score is applied, i.e. al+1 ← argmaxa Vθ (P(sl ,a)), where P(S,A)
is a function which applies production rule A to partial design S.
Once a candidate design with only terminal symbols is produced,
it is added to the list of possible candidate designs. From the final
list of K candidates, a random robot is selected with probability ϵ ;

Algorithm 2 Graph Heuristic Search
Inputs: Number of iterations N , number of candidate designs M , Adam
optimization steps opt_iter and batch size M .
Output: The best design s∗.
Initialize the look up table V̂ ← {}.
Initialize the graph neural network Vθ (s) with random parameters θ .
Initialize the best design s∗ ← None, r ∗ ← 0.
for episode j ← 1 to N do
▷ Design Phase: Generate a candidate design
P ← {} ▷ Initialize possible design candidates
▷ Sample K designs by ϵ -greedy approach
for k ← 1 to K do

s ← initial design graph
while s has non-terminals do

With probability ϵ select a random rule a from available rules
otherwise select a = argmaxa Vθ (P (s , a)).
s ← P (s , a)

end while
Add possible candidate s to P.

end for
▷ Choose one to be the candidate
With probability ϵ select a random sampled design from P as the can-
didate design d , otherwise select d = argmaxd∈P Vθ (d ) by heuristic
function Vθ .
▷ Evaluation Phase: Compute the average reward for the design
Run MPC to evaluate d and get average reward r .
▷ Update the best design and V̂
if r > r ∗ then

s∗ ← d
r ∗ ← r

end if
for Each partial ancestor design dp of d do

Update V̂ (dp ) ← max(V̂ (dp ), r ).
end for
▷ Learning Phase: train heuristic value function Vθ
for i ← 1 to opt_iter do

Sample a minibatch S of seen designs (partial or complete) of size
M .
Update Vθ (s) one step by Adam with the loss:∑

s∈S

∥Vθ (s) − V̂ (s) ∥
2

end for
end for

with probability 1 − ϵ , the design with the highest heuristic score is
chosen as the candidate to continue to the evaluation phase.

Two ϵ-greedy selection steps are applied during candidate robot
generation. This strategy is necessary to ensure that the space of
possible robot designs is sufficiently explored; if one begins with a
pure greedy strategy, the algorithm quickly converges to a subopti-
mal design. This is because we are taking a learning-based approach;
our heuristic function is inaccurate at the beginning (and not strictly
admissible) and improves in accuracy as the algorithm progresses.
Until the heuristic function converges to an accurate estimator map-
ping robot design to performance, it is necessary to generate a
diverse collection of robot designs from which to learn from (begin-
ning with ϵ = 1). The first ϵ-greedy exploration rule, within a given
design generation, helps guarantee a diverse collection of possible

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design • 188:9

candidate designs (with the variance of that set parameterized by ϵ).
SinceK applications of this process (with largeK and small ϵ) makes
it likely that at least one robot resembling the pure greedy-strategy
will be generated, the second ϵ-greedy exploration guarantees that
the same best candidate is not chosen each time. ϵ is decreased
with each episode toward 0 as the heuristic’s accuracy increases,
according to an exponential decay schedule (as in Q-learning); this
is made possible by a fast, accurate learned heuristic function, and
shifts the algorithm from exploration to exploitation.

Evaluation Phase. After a candidate robot has been decided on,
its performance must be evaluated. We simulate the candidate robot
with actuation inputs generated by the MPC algorithm described
in Section 5.2. It is possible for the same design candidate to be
proposed multiple times. Because our MPC algorithm is sampling-
based and stochastic, different average rewards V̂ may be seen for
the same design between episodes. We consider the V̂ of a design
to be the best average reward over all evaluations of the design. If
this average reward is the best seen so far, the candidate is stored
as the current best design, along with V̂ . Regardless, the candidate
robot design and its corresponding V̂ are stored (or updated) in a
lookup table, and the v̂ label of all of that design’s partial design
ancestors are updated to be the maximum of their current value
and the candidate robot’s average reward. This is important for the
upcoming learning phase, which must learn a heuristic function
that is valid for both complete and partial designs.

The number of candidate designs evaluated in each iteration is an
algorithm design trade-off. Evaluating more candidates will collect
more data, helping to train a more accurate prediction function. It
will also significantly increase the computation time, however, since
evaluation is the time bottleneck in our algorithm. We therefore
choose to evaluate only one design per iteration.

Learning Phase. The heuristic is trained using the data stored in
the lookup table. For opt_iter epochs, minibatches of (si , V̂i ) pairs
are sampled, and the loss L = 1

2 ∥Vθ (si ) − V̂ ∥
2
2 is minimized using

Adam [Kingma and Ba 2015].

6.1.2 Heuristic Function Model. To implement our heuristic func-
tion, we choose to leverage the expressive nature of graph neural
networks. Graph neural networks (GNNs) are neural network ar-
chitectures which aim to extend the benefits of deep learning to a
graphical setting. Unlike other neural network types such as CNNs,
which operate on images and data with fixed grid-like topologies,
graph neural networks aim to be flexible and operate on struc-
tures with arbitrary topologies. The input to a GNN consists of a
graph topology (e.g. an adjacency matrix), and values associated
with nodes (e.g. feature vectors). While many GNN models have
been proposed in recent years, our architecture is based on the
differentiable-pooling model. This model was designed for infer-
ence tasks involving graphs with a hierarchical nature, by iteratively
reducing the graph to a “lower resolution” graph in a manner similar
to hierarchical clustering. Please see [Ying et al. 2018] for more de-
tails. This model is well-suited for our scenario, where each robot is
itself created through a hierarchical substitution of grammar rules.
The differentiable-pooling GNN extends the GraphSage frame-

work from [Hamilton et al. 2017], which in turn is based on graph

convolutional networks (GCN) [Kipf and Welling 2016]. Analo-
gously to CNNs, GCNs apply a generalized convolution opera-
tor that operates on graphs rather than grids. We adopt a simi-
lar model as [Ying et al. 2018]. In this model, two “mean” Graph-
Sage+BatchNormalization layers are applied, followed by the hier-
archical clustering DiffPool layer, followed by three layers of graph
convolutions. This process is repeated one additional time, followed
by a final GraphSage layer, a mean pooling layer, and a final ReLU.
The output is a positive real-valued scalar representing predicted
robot performance. Each DiffPool layer reduces the node set’s car-
dinality by 75%.

An important property of this GNNmodel is that it is isomorphism-
invariant, meaning any two isomorphic graphs will have the same
value and gradient without the need for explicit transposition tables.
This greatly simplifies the bookkeeping in Graph Heuristic Search.

We convert robot design graphs into inputs for the GNN model
as follows. The graph is first converted to a kinematic tree, so that
each link has a unique joint connecting it to its parent link. Each
link and its parent joint is considered a node in this new graph.
Note that this representation differs from the one described in Sec-
tion 4. Next, anm-dimensional feature vector is extracted from each
node. If the link associated with the node is a terminal symbol, the
feature vector encodes the link’s initial position, orientation, and
geometric description. The parent joint’s rotation and servo param-
eters are included similarly, if present. If either the link or joint
are non-terminal symbols, the feature vector one-hot encodes the
non-terminal type.

6.2 Monte Carlo Tree Search
For comparison, we also implementMonte Carlo tree search (MCTS),
specifically the UCT algorithm [Kocsis and Szepesvári 2006]. An out-
line of our MCTS implementation is given in Algorithm 3. The state
of the algorithm is represented by a directed acyclic graph of nodes
representing partial designs and associated statistics. Directed edges
between the nodes represent actions, or rule applications. MCTS im-
plementations tend to differ in which statistics they store. Because
our problem setting is single-player and nonadversarial, we choose
to store the visit count and maximum reward. Like Graph Heuristic
Search, each iteration of our MCTS implementation incorporates
design, evaluation, and learning phases.

Our design phase combines the selection and expansion steps of
the standard MCTS iteration. The selection step begins at the root
of the tree, representing the start symbol of the grammar. Edges
are followed repeatedly until a node with no children (a leaf node)
is reached. When multiple edges are available, the one with the
highest UCT score is chosen:

argmax
a∈A(s)

(
Qs ,a (t) +

√
2 lnNs (t)

Ns ,a (t)

)
(1)

where Qs ,a (t) is the maximum result from all iterations where rule
a was applied to graph s , Ns (t) is the visit count of s , and Ns ,a (t) is
the number of iterations where a was applied to s . If the last node
reached represents a partial design, an expansion step is performed:
a randomly selected rule is applied and the node for the resulting
design added to the tree. Without further modifying the tree, rules

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



188:10 • Zhao et al.

Algorithm 3Monte Carlo Tree Search
Inputs: Number of iterations N , maximum number of simulation
attemptsM .
for i ← 1 to N do
Select node s using UCT formula.
Expand node s .
j ← 0 ▷ Number of attempted playouts
repeat

if j = M then
Block node s . ▷ Do not allow s to be selected again
Select new node s using UCT formula.
Expand new node s .
j ← 0

end if
Starting with graph in s , apply randomly sampled rules until
only terminal symbols are left.
j ← j + 1

until graph is simulable
Run MPC (Algorithm 1) to obtain result (average reward).
Update all nodes from s to the root with the result.

end for

are then randomly selected and applied until a complete design
is obtained. The complete design is evaluated in simulation using
MPC, in a way similar to Graph Heuristic Search.

In the learning phase, the statistics of nodes in the search tree that
were visited during the design phase are updated. Each visited node’s
visit count is incremented, and its maximum reward is replaced with
the evaluation result if it is higher. These updated statistics will guide
node selection in the next iteration.

In addition to the basic UCT algorithm described above, we imple-
ment several common enhancements which promote faster conver-
gence. To address the possibility of designs that are not simulable
due to self-collision, we apply rejection sampling. These modifica-
tions are described in the following paragraphs.

Transpositions. Some designs can be reached through multiple
different rule sequences (transpositions). To improve efficiency, only
one node is created per unique design. Statistics from all iterations
that visited a node, regardless of the exact sequence of rules, are
aggregated together. Childs et al. [2008] show that this scheme can
improve efficiency compared to the basic UCT algorithm for games
with many transpositions. An approximate hashing-based scheme
is used to detect isomorphic designs with a low probability of false
positives.

UCT-RAVE. Certain rules may tend to improve performance no
matter when they are applied. The UCT-RAVE algorithm [Gelly
and Silver 2011] takes this insight into account through the all-
moves-as-first (AMAF) heuristic [Helmbold and Parker-Wood 2009].
AMAF estimates the value of an action at a node based on iterations
that visited the node, like vanilla UCT. However, AMAF also uses
iterations where the action is taken anytime in the future, instead
of immediately at the node. UCT-RAVE blends between the vanilla
Monte Carlo value of an action and the AMAF value of an action

according to a schedule. As the visit count of a node increases, the
AMAF value is weighted less heavily.

Rejection Sampling. A simulation may fail to produce a valid re-
sult for a number of reasons, including self-collision in the starting
configuration. In that case, the search algorithm tries another ran-
dom playout from the same leaf node. Note that simply returning
a fixed, low result unnecessarily biases the search towards simpler
designs which are less likely to self-collide.

There may be partial designs that no sequence of rule applications
can convert into simulable designs. All playouts starting from the
corresponding nodes will fail to produce a valid result. We address
this potential issue by limiting the number of playout attempts for a
single node. Upon reaching the limit (set to 100), the node is blocked
and can no longer be selected. The iteration restarts at the selection
step and a different leaf node is expanded.

7 PROBLEM SPECIFICATION
Here, we describe the remaining (user-specified) components needed
to define a co-optimization problem with RoboGrammar.

7.1 Reward Function
A single reward function (Equation 2) is used to evaluate designs on
every terrain, and is computed at every time step of the simulation.
For the purposes of design optimization we use the average reward
across all time steps.

r (t) = ®wx · ®dx (t) + ®wy · ®dy (t) + ®wv · ®v(t) (2)
We consider the base link of the robot, or the forwardmost wide

body segment, to be representative of the robot’s motion. ®dx and
®dy are unit vectors pointing forward and upward in the base link’s
reference frame, respectively, and ®v is the base link’s velocity. All
quantities are expressed in world coordinates.
®wx = [−2, 0, 0]T , ®wy = [0, 2, 0]T , and ®wv = [2, 0, 0]T are weight-

ing vectors which set the relative importance of each term. They
also scale the reward function’s magnitude to the range expected
by the design search algorithm.

The first two terms encourage maintaining the initial orientation,
and the last term rewards forward progress. The robot starts with its
local x-axis pointing in the negative x direction in world coordinates.

7.2 Terrains
Terrains, in conjunction with the reward function, define tasks to
optimize robot structures for. Each terrain is intended to result in a
different set of optimal designs.

Flat terrain. A featureless surface with a friction coefficient of 0.9,
the flat terrain accommodates the greatest variety of locomotion
styles.

Frozen lake terrain. A flat surface with a low friction coefficient
of 0.05, the frozen lake terrain encourages designs which maximize
traction or use the low friction to their advantage.

Ridged terrain. Ridges or hurdles spaced an average of one meter
apart span the entire width of the ridged terrain, requiring designs
to jump or crawl in order to make progress.

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design • 188:11

Table 1. Graph Heuristic Search hyperparameter values

Hyperparameter Value
Number of iterations (N ) 2000
Initial ϵ (ϵ0) 1.0
Final ϵ (ϵ1) 0.1
ϵ exponential decaying factor (ϵdecay ) 0.3
Number of possible candidate robots (K ) 16
Optimization steps (opt_iter) 25
Optimization batch size (M) 32
Adam learning rate 1 × 10−4

Table 2. Simulation and MPC hyperparameter values

Hyperparameter Value
Simulation time step (dt ) 1/240 s
Default coefficient of friction 0.9
Joint torque limit 1 Nm
Control interval 16 time steps
Episode length (T ) 128 control intervals
Number of samples (K ) 64
MPC horizon, default (H ) 16 control intervals
MPC horizon, wall terrain (H ) 32 control intervals
Sample standard deviation, warm-start (σ1) 0.25
Sample standard deviation, history (σ2) 0.05

Wall terrain. Walls which are too high to traverse directly are
placed in a slalom-like arrangement. Designs must move around the
walls, requiring them to change their direction of motion rapidly.

Gap terrain. A series of platforms separated by gaps require de-
signs to tread carefully. As the gaps become progressively wider,
designs with the ability to take larger steps are favored.

Upward stepped terrain. A series of steps resembling a flight of
stairs test the ability of designs to climb. The steps are of varying
height, producing different gait variations over time.

8 IMPLEMENTATION
Before presenting our results, we briefly describe important details
regarding the implementation of RoboGrammar, including hyperpa-
rameter choices and experimental setup.

8.1 Hyperparameters
We run all experiments with the same hyperparameters unless oth-
erwise specified. The exploration parameter ϵ in GHS follows an
exponential decay schedule: ϵ(i) = ϵ1 + (ϵ0 − ϵ1) exp(− i/N

ϵdecay
),

where i is the current iteration, N is the total number of iterations,
ϵ0 = 1, ϵ1 = 0.1 and ϵdecay = 0.3. We run GHS for 2,000 iterations
(N = 2000). In the design phase of each iteration, GHS uses the
two ϵ-greedy steps to select one design to be tested by MPC from
16 sampled possible candidate robots. In the learning phase, the
Adam optimizer runs for 25 steps with batch size 32 and learning
rate 1 × 10−4.

Hyperparameters of the simulation and MPC are either chosen
based on our problem setting or are manually tuned. We use the
default time step of 1/240 s for Bullet Physics, which is the recom-
mended value for robotics applications. The default friction coeffi-
cient of 0.9 approximates that of rubber on pavement. Joint torques
are limited to one Newton-meter, which is within the capability of
affordable hobby servos. The MPC control interval, sample count,
and horizon are tuned to produce consistently high rewards while
limiting computation time. Computation time increases with control
interval, sample count, and horizon. Sample standard deviations are
tuned to balance progress on terrains with smooth motion. Higher
standard deviations result in faster but more erratic motion. A sum-
mary of hyperparameters is provided in Table 1 and Table 2.

8.2 Experiment Setup & Computational Time
We implemented our Graph Heuristic Search algorithm in Python,
and the simulation and MPC in C++. Experiments were run on VM
instances with either 32 or 64 Intel Cascade Lake vCPUs on Google
Cloud Platform. Each iteration of GHS spends less than 1 second
per possible candidate robot in the design phase, 40-60 seconds in
the MPC evaluation phase, and 6-8 seconds in the learning phase.
Since each possible candidate robot is sampled independently, the
design phase can be fully parallelized for further speedup. The time
bottleneck of the MPC evaluation phase shows the necessity of our
Graph Heuristic Search algorithm, which is able to find the best-
performing robots while evaluating a significantly fewer number of
robot designs. Section 9.4 describes this efficiency in detail.
Our two baseline search algorithms, MCTS and random search,

are also implemented in Python. Both baselines also spend the vast
majority of their computation time on MPC, with their design and
learning phases (if applicable) taking a negligible amount of time.

9 RESULTS
Here we demonstrate RoboGrammar on a collection of different
problems, examining how terrain affects which designs and con-
trollers are optimal. Furthermore, we examine how designs translate
over multiple terrains, analyzing the Pareto set of synthesized con-
trollers over terrain pairs. We qualitatively demonstrate the efficacy
of MPC for our problems and quantitatively analyze the efficiency
of our Graph Heuristic Search algorithm compared to the baselines.

9.1 Terrain Driven Optimization
As an end-to-end demonstration of the RoboGrammar pipeline, we
run Graph Heuristic Search on several different terrains. Each search
run consists of 2,000 iterations. A selection of best-performing de-
signs is shown in Figure 7.

Optimal designs for the ridged terrain are characterized by long
limbs which are able to swing upwards and clear obstacles. Although
the set of optimal designs consists mainly of quadrupeds, a few
tripedal designs emerge. These designs use their body as a third
point of contact with the ground.

The flat terrain, despite having no obstacles, still produces special-
ized designs. One successful strategy is to place short limbs spaced
far apart on the body, giving them a full range of motion. Although

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



188:12 • Zhao et al.

Fig. 7. Selection of best-performing designs generated with the grammar,
and optimized with Graph Heuristic Search and MPC for ridged, flat, frozen
lake, and gapped terrain respectively.

short limbs would be unable to clear obstacles on most of the other
terrains, their low inertia enables quick movement.
The frozen lake is superficially similar to the flat terrain, but

its low friction coefficient requires a different strategy. Successful
designs can both overcome the low friction and use it to their ad-
vantage. The bottom-left design in Figure 7 serves as an example.
Highly articulated yet compact arms maintain contact with the
ground during the stance phase, while the rear body segment slides
freely.

The gap terrain tends to produce designs with long limbs, much
like the ridged terrain. However, designs for gap terrain tend to have
limbs that are optimized for forward reaching instead of climbing.
Green joints, which enable limbs to move horizontally, are more
prevalent than orange joints, which enable vertical motion.

9.2 Pareto Analysis
In addition to single terrain optimization, we also show how our
grammar can help in discovering high-performing robots for mul-
tiple terrains simultaneously. We choose to use random search for
this experiment to avoid biasing the search towards a particular
objective. Each random design is evaluated on flat, ridged, and wall
terrain. The average reward of designs on two pairs of tasks is plot-
ted in Figure 8, with the Pareto optimal designs highlighted. The
Pareto sets include a variety of morphologies, each of which offers
an optimal trade-off, showing that our grammar is highly expressive.
Note that these results were obtained after evaluating only 20,000
random designs. This evaluation count is comparable to evolution-
ary robot design methods operating on a single objective, showing
that our grammar also has a compact search space.

9.3 Gait Patterns
In Figure 9, we demonstrate that our MPC implementation can
generate plausible gaits for challenging terrains. Time-lapses of
high performing designs traversing the upward stepped terrain and

Flat Terrain Task

R
id

ge
d 

Te
rr

ai
n 

Ta
sk

Ridged Terrain Task

W
al

l T
er

ra
in

 T
as

k

Fig. 8. Pareto optimal designs for pairs of terrains. Designs offering a variety
of trade-offs are discovered using only 20,000 iterations of random search,
demonstrating the versatile yet compact search space of our grammar.

wall terrain are shown. The robot on the upward stepped terrain
initially adopts a cyclic trotting gait. Most steps are low, requiring
only one of the front legs and one of the back legs to make contact.
Some of the steps are higher, causing MPC to switch to an ad-hoc
gait as necessary. The wall terrain-optimized robot also employs a
trotting gait, but with exaggerated body movements. Multiple joints
in the body allow the robot to curve sharply and change direction
rapidly. This can be seen in the last frame of the time-lapse, where
the robot turns sharply to the left in order to avoid a wall.

9.4 Efficiency of Graph Heuristic Search
To show the efficiency of the proposed Graph Heuristic Search al-
gorithm, we compare our algorithm with two baselines on four
different terrain tasks (flat terrain, frozen lake terrain, ridged ter-
rain, and wall terrain) described in Section 7.2. Specifically, the first
baseline is an adapted Monte Carlo tree search (MCTS) algorithm
described in Section 6.2. The second baseline algorithm is a random
search algorithm. In each iteration, one candidate design is selected

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design • 188:13

Fig. 9. Time-lapse showing movement of the high performing robots on upward stepped terrain and terrain with wall obstacles. Each front leg of the first
robot consists of 3 elbow joints and a final knee joint forming a hook-like ending to facilitate climbing high steps. The second robot has a long body with
many rotational joints and front legs designed for turning stability.

by applying random rules. Due to the stochasticity of the search
algorithms, we run each algorithm on each task at least three times
with different random seeds. Note that we run our Graph Heuristic
Search algorithm for only 2,000 iterations, as opposed to 5,000 itera-
tions for each baseline algorithm. The results in Figure 10 show that
Graph Heuristic Search consistently finds better designs (achieves
greater reward) than the baseline algorithms in much fewer itera-
tions. Due to the expensive MPC-based evaluation of designs and
the combinatorial nature of our design space, this sample efficiency
is key to finding high-performing designs in a reasonable amount of
time. The efficiency comes from the ability of the learned heuristic
function to generalize knowledge from explored designs to predict
the performance of untested designs and effectively prune the search
space.
Running 2,000 iterations of Graph Heuristic Search requires ap-

proximately 31 hours on a 32-core Google Cloud machine (instance
type n2-highcpu-32). This computational intensity is comparable
to other state-of-the-art robot design methods. For example, Neural
Graph Evolution [Wang et al. 2019b] is evaluated using 12 hours on
a 64-core machine. Note that we simulate designs with greater num-
bers of joints on more complex terrains, resulting in more expensive
evaluations. Evaluations account for approximately 20 hours out of
our total run time.

9.5 Convergence of Graph Heuristic Search
To demonstrate that Graph Heuristic Search is agnostic to the spe-
cific grammar described (the standard grammar), we optimize robots
for flat terrain using two modified grammars. The simple grammar
removes the rules for long limb links and elbow joints (r9 and r17 in
Figure 4 respectively), whose functionality is provided by other rules.
The asymmetric grammar increases complexity by allowing oppo-
site limbs to develop independently. Figure 11 shows that Graph
Heuristic Search consistently converges in training loss, prediction
error, and maximum cumulative reward. More complex grammars
require a greater number of iterations to achieve the same reward.

9.6 Design Space Bias
MCTS and GHS both rely on pruning the search space, so some
degree of bias can be expected in the resulting designs. In each given
state, MCTS explores every available action once before exploiting
a promising branch. We therefore expect the average number of
derivation steps in designs explored by MCTS to be low. The statis-
tics in Table 3 reflect this hypothesis, with designs found by MCTS
having fewer derivation steps than GHS on average. When consid-
ering all designs explored, random search has the lowest average
derivation length. This reflects the fact that random search does
not focus its exploration and will visit the same (simple) designs
repeatedly.

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



188:14 • Zhao et al.

0 1000 2000 3000 4000 5000
iteration

4.0

4.5

5.0

5.5

6.0

re
w

ar
d

Flat Terrain

algorithm
GHS
MCTS
random

0 1000 2000 3000 4000 5000
iteration

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

re
w

ar
d

Frozen Lake Terrain

algorithm
GHS
MCTS
random

0 1000 2000 3000 4000 5000
iteration

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

re
w

ar
d

Ridged Terrain

algorithm
GHS
MCTS
random

0 1000 2000 3000 4000 5000
iteration

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

re
w

ar
d

Wall Terrain

algorithm
GHS
MCTS
random

Fig. 10. Cumulative maximum reward versus iteration for Graph Heuristic Search, Monte Carlo tree search, and random search on four different terrains.
Each solid line is the mean of three different seeds, with the error band representing the range. Graph Heuristic Search consistently outperforms the baselines.

Table 3. Average number of derivation steps in designs evaluated by each
algorithm. Results are for flat terrain.

Algorithm All designs Best 100 designs
GHS 24.4 25.0
MCTS 24.0 20.9
random 11.4 23.4

10 LIMITATIONS AND FUTURE WORK
The example grammar presented in this work only considers bilat-
eral symmetry and joint types that occur in natural systems. To
explore designs outside this scope — for example, sea creatures —
the grammar from Section 4 could be extended. The grammar has
been designed to be easily expandable, and we leave this exploration
as an interesting direction for future work.
Model predictive control is able to produce stable gaits across a

wide variety of terrains and robot topologies. Dynamic gaits may
also exist, but they are unlikely to be found. This is due to the bias
introduced by our sampling scheme, as well as the limited torque
and high damping of the simulated motors.

Our framework ensures that simulated designs are at least fab-
ricable, or able to be built in their simulated configurations. With
the appropriate rules, robot grammars enforce the use of a limited
set of components and ensure that the components are connected
in a feasible manner. Providing an accurate match between simu-
lated and physical motions is not explicitly addressed in this work,
however, and it remains an interesting direction for future research.
Our grammar does not include continuous parameters, because

we are focused on optimizing discrete topology. Our framework
could easily be extended to handle continuous parameters using
attribute grammars, or in a post-processing step after the discrete
robot structure is identified.

11 CONCLUSION
Intelligent and efficient generative robot design methods will drive
the future of design processes for robotics. In this paper we present
a novel approach which leverages several different computational
tools to provide a new pipeline for efficient and large-scale explo-
ration of robot designs. By developing a graph grammar that allows
for a wide variety of robots to be generated, we show that creative

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.



RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design • 188:15

0 1000 2000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

Training Loss

grammar
standard
simple
asymmetric

0 1000 2000
iteration

0

1

2

3

4

5

er
ro

r

Average Prediction Error

0 1000 2000
iteration

3

4

5

6

re
w

ar
d

Best Reward

Fig. 11. Training loss, prediction error, and cumulative maximum reward versus iteration for Graph Heuristic Search on multiple grammars. Robots are
optimized for flat terrain. Prediction error is the absolute difference between predicted reward and evaluated reward, and is averaged over 100 iterations. Each
solid line is the mean of at least three different seeds, with the error band representing the range. Graph Heuristic Search consistently converges in all three
criteria.

solutions can emerge in response to different terrains. We introduce
a Graph Heuristic Search algorithm to search the combinatorial
search space, and couple it with MPC for evaluation. Unlike many
alternative approaches to generative robot design, this allows us
to structure and limit the design space by applying a graph gram-
mar, whilst allowing creative solutions to emerge. Importantly, the
emergent designs are observably physically fabricable and there is
significant potential for the designs to be translated to real-world
scenarios and environments.

ACKNOWLEDGMENTS
We are grateful to anonymous reviewers for their valuable feedback.
This work was supported by IARPA grant no. 2019-19020100001 and
NSF grant no. 1644558. M.K.L. would like to acknowledge support
from the Schmidt Science Fellowship.

REFERENCES
ZM Bi and Wen-Jun Zhang. 2001. Concurrent optimal design of modular robotic

configuration. Journal of Robotic systems 18, 2 (2001), 77–87.
Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A Connection between

Partial Symmetry and Inverse Procedural Modeling. ACM Trans. Graph. 29, 4, Article
Article 104 (July 2010), 10 pages. https://doi.org/10.1145/1778765.1778841

Josh C Bongard. 2013. Evolutionary robotics. Commun. ACM 56, 8 (2013), 74–83.
Luzius Brodbeck, Simon Hauser, and Fumiya Iida. 2015. Morphological evolution of

physical robots through model-free phenotype development. PloS one 10, 6 (2015),
e0128444.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. 2012. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.

I-Ming Chen and Joel W Burdick. 1995. Determining task optimal modular robot
assembly configurations. In proceedings of 1995 IEEE International Conference on
Robotics and Automation, Vol. 1. IEEE, 132–137.

Benjamin E Childs, James H Brodeur, and Levente Kocsis. 2008. Transpositions and
move groups in Monte Carlo tree search. In 2008 IEEE Symposium On Computational
Intelligence and Games. IEEE, 389–395.

Noam Chomsky. 1956. Three models for the description of language. IRE Transactions
on Information Theory 2, 3 (Sep. 1956), 113–124. https://doi.org/10.1109/TIT.1956.
1056813

Erwin Coumans. 2015. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses.
ACM, 7.

Minh Dang, Stefan Lienhard, Duygu Ceylan, Boris Neubert, Peter Wonka, and Mark
Pauly. 2015. Interactive Design of Probability Density Functions for Shape Grammars.
ACM Trans. Graph. 34, 6, Article Article 206 (Oct. 2015), 13 pages. https://doi.org/
10.1145/2816795.2818069

Frances Downing and Ulrich Flemming. 1981. The bungalows of Buffalo. Environment
and Planning B: Planning and Design 8, 3 (1981), 269–293.

José Pinto Duarte. 2005. Towards the Mass Customization of Housing: The Grammar
of Siza’s Houses at Malagueira. Environment and Planning B: Planning and Design
32, 3 (2005), 347–380. https://doi.org/10.1068/b31124

Roy Featherstone. 1983. The calculation of robot dynamics using articulated-body
inertias. The International Journal of Robotics Research 2, 1 (1983), 13–30.

Carlos E Garcia, David M Prett, and Manfred Morari. 1989. Model predictive control:
theory and practice—a survey. Automatica 25, 3 (1989), 335–348.

Sylvain Gelly, Levente Kocsis, Marc Schoenauer, Michele Sebag, David Silver, Csaba
Szepesvári, and Olivier Teytaud. 2012. The grand challenge of computer Go: Monte
Carlo tree search and extensions. Commun. ACM 55, 3 (2012), 106–113.

Sylvain Gelly and David Silver. 2011. Monte-Carlo tree search and rapid action value
estimation in computer Go. Artificial Intelligence 175, 11 (2011), 1856–1875.

David Ha. 2018. Reinforcement learning for improving agent design. arXiv preprint
arXiv:1810.03779 (2018).

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning
on large graphs. In Advances in neural information processing systems. 1024–1034.

David P Helmbold and Aleatha Parker-Wood. 2009. All-Moves-As-First Heuristics in
Monte-Carlo Go.. In IC-AI. 605–610.

Jonathan Hiller and Hod Lipson. 2011. Automatic design and manufacture of soft
robots. IEEE Transactions on Robotics 28, 2 (2011), 457–466.

Gregory S Hornby and Jordan B Pollack. 2001. The advantages of generative grammati-
cal encodings for physical design. In Proceedings of the 2001 Congress on Evolutionary
Computation (IEEE Cat. No. 01TH8546), Vol. 1. IEEE, 600–607.

Diego Jesus, António Coelho, and António Augusto Sousa. 2016. Layered Shape Gram-
mars for Procedural Modelling of Buildings. Vis. Comput. 32, 6–8 (June 2016),
933–943. https://doi.org/10.1007/s00371-016-1254-8

Gangyuan Jing, Tarik Tosun, Mark Yim, and Hadas Kress-Gazit. 2018. Accomplishing
high-level tasks with modular robots. Autonomous Robots 42, 7 (2018), 1337–1354.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.). http://arxiv.org/abs/1412.6980

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.

https://doi.org/10.1145/1778765.1778841
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1145/2816795.2818069
https://doi.org/10.1145/2816795.2818069
https://doi.org/10.1068/b31124
https://doi.org/10.1007/s00371-016-1254-8
http://arxiv.org/abs/1412.6980


188:16 • Zhao et al.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Gregor Klančar and Igor Škrjanc. 2007. Tracking-error model-based predictive control
for mobile robots in real time. Robotics and autonomous systems 55, 6 (2007), 460–469.

Eric Klavins, Robert Ghrist, and David Lipsky. 2004. Graph grammars for self assembling
robotic systems. In IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004, Vol. 5. IEEE, 5293–5300.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning. In
European conference on machine learning. Springer, 282–293.

John R Koza. 1995. Survey of genetic algorithms and genetic programming. In Wescon
conference record. Western Periodicals Company, 589–594.

Lars Krecklau, Darko Pavic, and Leif Kobbelt. 2010. Generalized Use of
Non-Terminal Symbols for Procedural Modeling. Computer Graphics Fo-
rum 29, 8 (2010), 2291–2303. https://doi.org/10.1111/j.1467-8659.2010.01714.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01714.x

Felipe Kuhne, Walter Fetter Lages, and J Gomes da Silva Jr. 2004. Model predictive
control of a mobile robot using linearization. In Proceedings of mechatronics and
robotics. Citeseer, 525–530.

Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. 2011. Converting
3D furniture models to fabricatable parts and connectors. In ACM Transactions on
Graphics (TOG), Vol. 30. ACM, 85.

Gil Lederman, Markus N Rabe, Edward A Lee, and Sanjit A Seshia. 2018. Learning
heuristics for automated reasoning through deep reinforcement learning. arXiv
preprint arXiv:1807.08058 (2018).

Markus Lipp, Peter Wonka, and Michael Wimmer. 2008. Interactive Visual Editing of
Grammars for Procedural Architecture. In ACM SIGGRAPH 2008 Papers (SIGGRAPH
’08). Association for Computing Machinery, New York, NY, USA, Article Article 102,
10 pages. https://doi.org/10.1145/1399504.1360701

Tianqiang Liu, Siddhartha Chaudhuri, Vladimir G. Kim, Qixing Huang, Niloy J. Mitra,
and Thomas Funkhouser. 2014. Creating Consistent Scene Graphs Using a Proba-
bilistic Grammar. ACM Trans. Graph. 33, 6, Article Article 211 (Nov. 2014), 12 pages.
https://doi.org/10.1145/2661229.2661243

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mor-
datch. 2018. Plan online, learn offline: Efficient learning and exploration via model-
based control. arXiv preprint arXiv:1811.01848 (2018).

Jon McCormack, Alan Dorin, Troy Innocent, et al. 2004. Generative design: a paradigm
for design research. Proceedings of Futureground, Design Research Society, Melbourne
(2004).

Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006.
Procedural Modeling of Buildings. ACM Trans. Graph. 25, 3 (July 2006), 614–623.
https://doi.org/10.1145/1141911.1141931

Rémi Munos et al. 2014. From bandits to Monte-Carlo Tree Search: The optimistic
principle applied to optimization and planning. Foundations and Trends® in Machine
Learning 7, 1 (2014), 1–129.

Quan V Nguyen, Francis Colas, Emmanuel Vincent, and François Charpillet. 2017.
Long-term robot motion planning for active sound source localization with Monte
Carlo tree search. In 2017 Hands-free Speech Communications and Microphone Arrays
(HSCMA). IEEE, 61–65.

Peter Norvig and Stuart Russell. 2002. Artificial Intelligence: A modern approach (3rd
ed.). Prentice Hall.

Yoav I. H. Parish and Pascal Müller. 2001. Procedural Modeling of Cities. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’01). Association for Computing Machinery, New York, NY, USA, 301–308.
https://doi.org/10.1145/383259.383292

Deepak Pathak, Chris Lu, Trevor Darrell, Phillip Isola, andAlexei A Efros. 2019. Learning
to control self-assembling morphologies: a study of generalization via modularity.
arXiv preprint arXiv:1902.05546 (2019).

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. 2017. Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 1–13.

Jordan B Pollack, Gregory S Hornby, Hod Lipson, and Pablo Funes. 2003. Computer
creativity in the automatic design of robots. Leonardo 36, 2 (2003), 115–121.

Jim Pugh and Alcherio Martinoli. 2007. Inspiring and modeling multi-robot search
with particle swarm optimization. In 2007 IEEE Swarm Intelligence Symposium. IEEE,
332–339.

Maarten PD Schadd, Mark HM Winands, H Jaap Van Den Herik, Guillaume MJ-B
Chaslot, and Jos WHM Uiterwijk. 2008. Single-player monte-carlo tree search. In
International Conference on Computers and Games. Springer, 1–12.

Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew R Walter. 2019. Jointly
learning to construct and control agents using deep reinforcement learning. In 2019
International Conference on Robotics and Automation (ICRA). IEEE, 9798–9805.

Linda C Schmidt and Jonathan Cagan. 1997. GGREADA: a graph grammar-based
machine design algorithm. Research in Engineering Design 9, 4 (1997), 195–213.

Linda C Schmidt, Harshawardhan Shetty, and Scott C Chase. 1999. A graph grammar
approach for structure synthesis of mechanisms. J. Mech. Des. 122, 4 (1999), 371–376.

Karl Sims. 1994. Evolving virtual creatures. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques. ACM, 15–22.

SN Sivanandam and SN Deepa. 2008. Genetic algorithms. In Introduction to genetic
algorithms. Springer, 15–37.

Brian Smith, Ayanna Howard, John-Michael McNew, Jiuguang Wang, and Magnus
Egerstedt. 2009. Multi-robot deployment and coordination with embedded graph
grammars. Autonomous Robots 26, 1 (2009), 79–98.

Andrew Spielberg, Allan Zhao, Yuanming Hu, Tao Du, Wojciech Matusik, and Daniela
Rus. 2019. Learning-In-The-Loop Optimization: End-To-End Control And Co-Design
of Soft Robots Through Learned Deep Latent Representations. In Advances in Neural
Information Processing Systems. 8282–8292.

Ondrej Št’ava, Bedrich Beneš, Radomir Měch, Daniel G Aliaga, and Peter Krištof. 2010.
Inverse procedural modeling by automatic generation of L-systems. In Computer
Graphics Forum, Vol. 29. Wiley Online Library, 665–674.

George Stiny. 1982. Spatial Relations and Grammars. Environment and Planning B:
Planning and Design 9, 1 (1982), 113–114. https://doi.org/10.1068/b090113

George Stiny and James Gips. 1971. ‘Shape Grammars and the Generative Specification
of Painting and Sculpture’. IFIP Congress 71, 1460–1465.

George Stiny and William J. Mitchell. 1978. The Palladian Grammar.
Fritz R Stöckli and Kristina Shea. 2015. A simulation-driven graph grammar method

for the automated synthesis of passive dynamic brachiating robots. In ASME 2015
International Design Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference. American Society of Mechanical Engineers Digital
Collection.

Russ Tedrake, Teresa Weirui Zhang, and H Sebastian Seung. 2004. Stochastic policy
gradient reinforcement learning on a simple 3D biped. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), Vol. 3.
IEEE, 2849–2854.

Merel Van Diepen and Kristina Shea. 2019. A spatial grammar method for the compu-
tational design synthesis of virtual soft locomotion robots. Journal of Mechanical
Design 141, 10 (2019).

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. 2019a. Paired open-ended
trailblazer (poet): Endlessly generating increasingly complex and diverse learning
environments and their solutions. arXiv preprint arXiv:1901.01753 (2019).

TingwuWang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. 2019b. Neural Graph Evolution:
Towards Efficient Automatic Robot Design. arXiv preprint arXiv:1906.05370 (2019).

Richard A Watson, Sevan G Ficici, and Jordan B Pollack. 2002. Embodied evolution:
Distributing an evolutionary algorithm in a population of robots. Robotics and
Autonomous Systems 39, 1 (2002), 1–18.

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A
Theodorou. 2016. Aggressive driving with model predictive path integral con-
trol. In 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
1433–1440.

Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003. Instant
Architecture. ACM Trans. Graph. 22, 3 (July 2003), 669–677. https://doi.org/10.1145/
882262.882324

FuzhangWu, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, and Peter Wonka. 2014.
Inverse Procedural Modeling of Facade Layouts. ACM Transactions on Graphics 33
(08 2014). https://doi.org/10.1145/2601097.2601162

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. In Advances in neural information processing systems. 4800–4810.

ACM Trans. Graph., Vol. 39, No. 6, Article 188. Publication date: December 2020.

https://doi.org/10.1111/j.1467-8659.2010.01714.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01714.x
https://doi.org/10.1145/1399504.1360701
https://doi.org/10.1145/2661229.2661243
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.1145/383259.383292
https://doi.org/10.1068/b090113
https://doi.org/10.1145/882262.882324
https://doi.org/10.1145/882262.882324
https://doi.org/10.1145/2601097.2601162

	Abstract
	1 Introduction
	2 Related Work
	2.1 Generative design for robotics
	2.2 Graph grammars
	2.3 Grammar-based procedural modeling
	2.4 Control methods and approaches

	3 System Overview
	4 Robot Grammar
	4.1 Robot representation
	4.2 Grammar definitions
	4.3 Production rules and robot components

	5 Simulation & Control
	5.1 Simulation
	5.2 Model Predictive Control

	6 Search & Optimization
	6.1 Graph Heuristic Search
	6.2 Monte Carlo Tree Search

	7 Problem Specification
	7.1 Reward Function
	7.2 Terrains

	8 Implementation
	8.1 Hyperparameters
	8.2 Experiment Setup & Computational Time

	9 Results
	9.1 Terrain Driven Optimization
	9.2 Pareto Analysis
	9.3 Gait Patterns
	9.4 Efficiency of Graph Heuristic Search
	9.5 Convergence of Graph Heuristic Search
	9.6 Design Space Bias

	10 Limitations and Future Work
	11 Conclusion
	Acknowledgments
	References

