
Multi-Objective Graph Heuristic Search for
Terrestrial Robot Design

Jie Xu, Andrew Spielberg, Allan Zhao, Daniela Rus, Wojciech Matusik
http://moghs.csail.mit.edu

Abstract— We present methods for co-designing rigid robots
over control and morphology (including discrete topology) over
multiple objectives. Previous work has addressed problems in
single-objective robot co-design or multi-objective control. How-
ever, the joint multi-objective co-design problem is extremely
important for generating capable, versatile, algorithmically
designed robots. In this work, we present Multi-Objective
Graph Heuristic Search, which extends a single-objective graph
heuristic search from previous work to enable a highly efficient
multi-objective search in a combinatorial design topology space.
Core to this approach, we introduce a new universal, multi-
objective heuristic function based on graph neural networks
that is able to effectively leverage learned information between
different task trade-offs. We demonstrate our approach on six
combinations of seven terrestrial locomotion and design tasks,
including one three-objective example. We compare the cap-
tured Pareto fronts across different methods and demonstrate
that our multi-objective graph heuristic search quantitatively
and qualitatively outperforms other techniques.

I. INTRODUCTION

Most physical tasks in the world, performed by humans
or other animals, require being adept at multiple skills. For
example, a lizard hunting prey may need to be proficient at
climbing trees and running; a duck in migration needs to be
able to both fly and swim; a human hurdler must be fast at
running along bends and straightaways as well as jumping. If
such animals were only capable of single motions, we would
not expect them to be very successful.

We similarly should expect diverse adroitness from our
robots. Yet, recent successes in algorithms which can co-
design robots over morphology and control have been typ-
ically catered to singlular task specifications. For example,
an algorithm may be able to co-design robots for forward
running speed, energy efficient gaits, or climbing rough
terrains, but not all three skills at once. In order to compu-
tationally develop robots capable of composite tasks rather
than single repetitious motions, we require algorithms that
simultaneously optimize over collections of requisite skills.

This work presents a method for multi-objective rigid
robot co-design over both control and morphology (including
discrete topology). Unlike much previous work on multi-
objective co-design which only examined continuous param-
eters, we consider discrete topology as well as continuous
control parameters. Because form informs function and vice
versa, it is natural that different robot designs will be better

J. Xu, A. Spielberg, A. Zhao, D. Rus, W. Matusik are with
the MIT Computer Science And Artificial Intelligence Laboratory
(CSAIL), Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts, {jiex,aespielberg}@csail.
mit.edu,azhao@mit.edu,{rus,wojciech}@csail.mit.edu

at different tasks. But, as in nature, rarely will a single design
be best at all tasks. Thus, our goal is to extract robots with
optimal trade-offs across different design objectives; i.e. the
Pareto set of robot designs for the tasks at hand.

Our method builds upon RoboGrammar [1], a method
that proposes a bio-inspired grammar for robot topological
design and employs a learning-based morphological search
over that design space. Robots are co-designed over topology
and control; specifically, it employs a model predictive
control (MPC) scheme. Complex grammars like that of
RoboGrammar can be very expressive but typically yield
large search spaces that are intractable to optimize over via
naı̈ve methods; the problem only becomes more difficult
when multiple objectives are considered. The algorithm we
present here is the only proposed method for solving this
difficult and important multi-objective, topology/control co-
design problem; thus making it novel in both problem scope
and solution.

In this work, we contribute: 1) Multi-objective co-design
algorithms for finding Pareto-optimal robot topologies and
controllers over challenging objective trade-offs, 2) Demon-
strations on combinations of terrestrial robot locomotion
tasks, some with design restrictions, and 3) Comparisons
of our proposed methods benchmarked against baselines,
demonstrating the power and importance of our techniques.

II. RELATED WORK

A. Multi-objective Optimization

Multi-objective search algorithms have been successfully
deployed in a wide variety of engineering domains, including
material design [2], automotive engineering [3], thermody-
namics [4], and medicine [5], to name a few. Core to these
applications is the development of search algorithms that can
retrieve dense Pareto fronts that are close to the ground-truth,
with high sample efficiency. Two popular categories of strate-
gies exist. The first is evolutionary algorithms; see [6] for an
introduction. Popular methods in this space include NGSA-II
[7], NEAT [8], and CMA-ES [9]. These algorithms employ
principled heuristics to efficiently trade off exploration of
the design space with exploitation of the estimated Pareto
front. Contrasted with evolutionary approaches are analytical
methods such as [10] or [11], which combine probabilistic
search with local, gradient-based optimization for increased
efficiency. Particularly popular in this space are scalarization
approaches (like [10]), which perform continuous optimiza-
tions over sampled weight combinations. Our approach is
similar to scalarization methods, but makes significant adap-

http://moghs.csail.mit.edu
 {jiex, aespielberg}@csail.mit.edu, azhao@mit.edu, {rus, wojciech}@csail.mit.edu
 {jiex, aespielberg}@csail.mit.edu, azhao@mit.edu, {rus, wojciech}@csail.mit.edu

tations in order to account for large, grammar-based design
spaces with stochastic objectives.

B. Multi-Objective Control Optimization

Multi-objective optimization has been recently applied
to robot control problems through the combination of re-
inforcement learning methods and classical multi-objective
optimization techniques. Methods such as [12] and [13]
apply scalarizations to reduce these multi-objective searches
to single objective problems that can be solved via rein-
forcement learning algorithms. Another category of methods
discovers the entire set of control policies to approximate the
true Pareto-optimal set, either through preference sampling
[14], [15], evolutionary algorithms [16], or universal control
policy representation [17], [18]. Compared to those methods,
our work focuses on co-design of complex topology and
control, and understanding their tight interplay.

C. Robot Co-Design

Robot co-design techniques include evolutionary ap-
proaches, analytical methods, and search-based approaches.

Evolutionary approaches apply evolutionary algorithms to
iteratively improve robot form and behavior across gener-
ations. Early notable work in this space includes [19] and
[20], which evolved rigid robot morphologies and controllers
to produce agile creatures. It was recently demonstrated that
such techniques could be applied to the robust space of neural
network controllers [21]. Such techniques have also been
applied to soft robots [22], [23], [24], evolving robots over
geometry, actuation, and open-loop control. Evolutionary
approaches lead to high diversity but poor convergence.

Analytical methods use model gradients in order to inform
search. Analytical methods improve search efficiency, but can
get stuck in local suboptima. Rigid co-optimization over con-
tinuous morphological and control parameters for walking
robots has been extensively studied over the last decade [25],
[26], [27], [28], [29]. Similar continuous parameter searches
have also been applied to soft robots [30], [31].

Search-based methods can both handle combinatorial
topology search and still have promising efficiency. In these
methods, discrete searches of joint and limb configurations
are guided by heuristic functions. These heuristics can be
provided a priori [32] or, most similar to our work, iteratively
learned [1] from evaluated designs.

III. PRELIMINARIES

Our method builds upon RoboGrammar, a grammar-based
search method for co-designing robot morphologies and
controllers. Choosing a grammar as a search space enables
one to search over discrete operations that define robot
topology; this provides for much more expressive designs
than afforded by purely continuous parameters. We refer the
reader to [1] for details regarding the RoboGrammar method
and briefly summarize its key components here.

In RoboGrammar, each robot topology design is repre-
sented as a directed acyclic graph, where each graph node
is corresponding to a physically realizable component and
each graph edge is corresponding to a physical link between
those parts. RoboGrammar’s morphological design space is

body link
15cm

limb link
15cm

limb link
10cm

rigid joint

rigid joint

roll joint
θr∈[0°,360°]

U

E

T

Y

H

M

C

L

J

twist joint
θr∈[0°,360°]

roll joint
θr∈[0°,360°]

r₈

θr

θr

θr

θr

θi

θr

θi

knee joint
θr∈[0°,180°]
θi∈{60°,120°}

elbow joint
θr∈[0°,180°]
θi∈{-90°,90°}

r₁₀r₉

connector

mount link

wheel

r₁₁
r₁₂

r₁₃

r₁₄
r₁₅ r₁₆

r₁₇ r₁₈

r₁₉

r₂₀

r₂₁
r₂₂

r₂₃

S H

Body structure

B T

T TY B

Adding appendage to body

B U

M

E

B U

r₁:

r₂:

r₃:

r₄:

Appendages

E ELJr₅:

r₆: T

r₇:

E

H E

start symbol

mount part
connector

head part

tail part

body joint
body part

body link

limb end
limb joint
limb link

CC

M

M

S

H

Y

B

T

Legend

U

C

M

E

L

Grammar structural rules

J
C

C

body link
15cm

limb link
15cm

limb link
10cm

rigid joint

rigid joint

roll joint
θr∈[0°,360°]

U

E

T

Y

H

M

C

L

J

twist joint
θr∈[0°,360°]

roll joint
θr∈[0°,360°]

r₈

θr

θr

θr

θr

θi

θr

θi

knee joint
θr∈[0°,180°]
θi∈{60°,120°}

elbow joint
θr∈[0°,180°]
θi∈{-90°,90°}

r₁₀r₉

connector

mount link

wheel

r₁₁
r₁₂

r₁₃

r₁₄
r₁₅ r₁₆

r₁₇ r₁₈

r₁₉

r₂₀

r₂₁
r₂₂

r₂₃

S H

Body structure

B T

T TY B

Adding appendage to body

B U

M

E

B U

r₁:

r₂:

r₃:

r₄:

Appendages

E ELJr₅:

r₆: T

r₇:

E

H E

start symbol

mount part
connector

head part

tail part

body joint
body part

body link

limb end
limb joint
limb link

CC

M

M

S

H

Y

B

T

Legend

U

C

M

E

L

Grammar structural rules

J
C

C

S H

Body structure

B T

T TY B

Adding appendage to body

B U

M

E

B U

r₁:

r₂:

r₃:

r₄:

Appendages

E ELJr₅:

r₆: T

r₇:

E

H E

start symbol

mount part
connector

head part

tail part

body joint
body part

body link

limb end
limb joint
limb link

CC

M

M

S

H

Y

B

T

Legend

U

C

M

E

L

Grammar structural rules

J
C

C

Fig. 1. A graph-based grammar for terrestrial robot proposed by
RoboGrammar. Left: A subset of the grammar’s rules. Right: Physical
components that can be generated by next-to-terminal symbols. The full
grammar can be found in [1].

then defined by a context-free graph grammar, and is con-
structed in order to promote terrestrially locomoting designs
inspired by arthropods. Fig. 1 provides a snapshot of some
of the most salient operations it describes. Each instance
of the grammar has a graph representation where nodes
can correspond to terminal or nonterminal symbols. Starting
from a nonterminal symbol “S”, the grammar iteratively
applies applicable rules to replace a nonterminal symbol
in the current topology graph by a subgraph. A terminal
design is produced once the graph consists of only terminal
symbols. The grammar provides a constrained (i.e. valid)
but expressive design space. While we use this grammar for
these listed advantages, we stress that the search algorithm
presented in this paper is general and can be applied to any
grammar-defined robot search space.

To search over its combinatorial design space, Robo-
Grammar proposes Graph Heuristic Search (GHS) algorithm,
which is inspired by reinforcement learning. The algorithm
alternates a heuristic-function-guided stochastic sampling of
robot designs with a learning phase which improves that
heuristic function. The heuristic function’s goal is to accu-
rately predict the “reward” that a design will provide, includ-
ing those of partial (non-terminal) designs generated during
the design generation process. Despite the search space being
combinatorial, the GHS prioritizes the branches that have the
best chance of producing well-performing deigns; readers
may draw parallels to A∗ search. This heuristic is defined by
a graph neural network architecture which naturally maps
design’s links to nodes and joints to edges. The heuristic
can operate on both complete and partial designs, enabling
its use throughout the search.

In order to evaluate sampled designs and generate a
control sequence, RoboGrammar employs MPC, specifically
a stochastic MPPI scheme based off the POLO algorithm
[33]. This stochasticity allows for exploration in the control
planning stage and is resilient to poor local minima; however,
this comes at the cost of noise in the evaluation procedure.
Applying MPC twice to a morphology can lead to different
controllers with very different rewards. This stochasticity
requires care in the design generation phase, as it means
the GHS must (judiciously) revisit designs to see if better
controllers are feasible.

We note that although this co-design search may seem

to be just two separate, sequential steps — a morpholog-
ical design search followed by control generation — it is
more accurate to describe it as a three-phase alternating co-
optimization process when the heuristic is involved. First, a
heuristic is used to “intelligently” sample a design; second,
the design is fed to MPC, and a motion is optimized; third,
the reward calculated from the MPC-generated trajectory
is used to improve the accuracy of the learned heuristic
function. This three-phase process is visualized in Fig. 3.

The remainder of this paper is structured as follows.
First, we introduce the scalarization approach to multi-
objective optimization, and present two approaches to robot
co-design which leverage this approach: a simple method
based on solving a set of standalone subproblems, and a more
sophisticated and efficient Multi-Objective Graph Heuristic
Search (MOGHS) that uses GHS to iteratively expand the
Pareto front along different sampled directions in objective
space, while learning a heuristic function shared across these
directions. This shared heuristic is key to making our search
efficient. Then, we present experiments demonstrating the
efficacy of our methods compared to baselines, and conclude
with possible extensions to this work.

IV. METHOD

Let DDD define the space of valid designs (morphol-
ogy and control sequence). We define a multi-objective
function F : DDD → Rm, such that for d ∈ DDD, F(d) =
(f1(d), f2(d), ..., fm(d)). Our goal is to generate designs
which are Pareto optimal in the objective space; in other
words, designs which are non-dominated by any other dis-
covered design for any objective trade-off. In our maximiza-
tion problem setting, a design d is said to be Pareto optimal
if @d′ ∈DDD s.t. : ∀i fi(d′)≥ fi(d) ∧ ∃i s.t. fi(d′)> fi(d). In
layman’s terms, a design is considered Pareto optimal if there
does not exist another design that is strictly better than this
design at all objectives. We call the set of objective values
of Pareto optimal designs the Pareto front.

Fig. 2. A cartoon depicting the
scalarization method. Weight pairs
form rays that project radially out-
ward from the origin. Each circle
represents a point that might be
found during a single objective
optimization using the weights de-
fined by the ray of its color. Cir-
cles with black borders are the op-
timal solutions to the correspond-
ing weights, which form a convex
Pareto approximation front.

In practice, computing the
exact Pareto set/front is in-
tractable for most hard prob-
lems; thus, we seek an al-
gorithm which can find a
Pareto approximation set that
is as “good” as possible. We
discuss quantitative metrics
for evaluating the quality of
a Pareto front in Sec. V-
B. However, we describe a
qualitative way of determin-
ing the goodness of Pareto
fronts here. Consider weight
vectors ωωω ∈ Rm s.t. ∀i ωi ≥
0 and ‖ωωω‖p = 1 for some
norm p. This can be thought
of as the space of rays that
sweep out radially in the first
orthant. We wish to find a
Pareto set such that, for every valid ωωω , there exists a point d
in the Pareto set for which ωωω ·F(d) is large. In other words,

Sample
preference weight

)

#

"-greedy

I. Design Phase

III. Learning Phase

GNN

universal heuristic function

Training

Design buffer

{(#!,)", *+!,")}

…
rule 1

ru
le

2

1, 0, … , 1.2

updateMPC

II. Evaluation Phase

non-terminal part

graph
representation

Fig. 3. Overview of the Multi-Objective Graph Heuristic Search (MOGHS).
In each episode, the algorithm conducts three phases (similar to GHS).
Design Phase: A robot design is selected using a learned universal graph
heuristic function along with a randomly picked preference weight ωωω .
Evaluation Phase: The selected robot design is evaluated by MPC for each
objective. Learning Phase: All the designs seen so far are leveraged to
improve the heuristic.

for each (scalarization direction) ray ωωω we want to find points
whose objectives are far away from the origin along that ray.

Given this, an obvious strategy for multi-objective opti-
mization arises, termed scalarization methods. For a large
collection of weight vectors {ωωω i}n

i=1, a Pareto approximation
set can be extracted by solving the set of optimization
subproblems, where subproblem Pi is argmaxd∈DDD ωωω i ·F(d)
(Fig. 2). This approach leads to two challenges. The first
challenge is to find (as close to) the global maximum of
each optimization subproblem. The second challenge is to
have an efficient optimization scheme such that a dense set
of weight vectors can be optimized.

As a first attempt at solving this problem, we propose the
following (naı̈ve) “discrete weights” strategy. Given a budget
n, sample a uniformly spaced set {ωωω i}n

i=1 a priori. Then,
for each weight vector ωωω i, solve the n corresponding Pi
independently, using the approach presented in [1] as a black
box with reward ωωω i ·F. Such an approach can unfortunately
have poor sample efficiency, especially in high-dimensional
objective spaces, and treats problems with shared structure
as decoupled. Thus, here we propose an alternative algorithm
that is more effective at extracting good Pareto fronts.

A. Multi-objective Graph Heuristic Search

The discrete weights strategy has two shortcomings. The
first is its decision to fix weights a priori. This makes it
harder to find Pareto optimal points that do not lie along the
sampled scalarization directions. The second shortcoming is
the decision to treat each subproblem independently, despite
the clear shared structure between the subproblems.

We thus improve the approach presented in RoboGrammar
to efficiently search in multi-objective spaces. Our multi-
objective optimization strategy makes the following two
core changes. First, we sample weight vectors uniformly
randomly at each episode of the algorithm both to search
over the entire space of weight vectors in a single invocation
of search algorithm, as well as to have a dense set of
scalarization directions. Our second core innovation is to

modify our learning model to be multi-objective and univer-
sal (named after its similarity in structure to universal control
evaluators [17]), which we describe shortly. This improves
search efficiency because the representations learned by the
heuristic function can be shared by all weight combinations.

The process of MOGHS is visualized in Fig. 3, and the full
algorithm can be found in Algorithm 1. Here, the original
GHS is presented in black and teal as in Zhao et al. [1], with
our new modifications highlighted in red. We now describe
the major changes to the three phases of RoboGrammar’s
GHS to formulate our MOGHS.

1) Design Phase: In GHS, a designs is sampled in each
episode according to a “double ε-greedy” approach in order
to balance exploration and exploitation. First, K designs are
sampled by ε-greedily choosing the next rule to apply at each
step of the generation process, where the greedy choice is
chosen by the one with the best heuristic function value.
The final design can then be chosen greedily or rejected for
a random one at an ε rate. In MOGHS, we instead first
sample an ωωω vector uniformly at random, a search direction
for this episode of the design search. Using this, the greedy
selection scheme is generalized to multiple objectives by the
linear scalarization ωωω ·V(d,ωωω).

Readers may note that the new greedy selection criterion
requires two changes to the structure of the heuristic func-
tion. First, the heuristic must accept a weight vector ωωω in
addition to a design d as input, thus making it a universal
predictor among all possible ωωω . Second, it outputs a vector of
the predicted value of each objective function when evaluated
by MPC, thus making it multi-objective. Thus, we design
such a heuristic function V : DDD×Rm→ Rm.

2) Evaluation Phase: A candidate design is evaluated m
times, in m separate invocations of MPC. The ith invocation is
run optimizing reward (objective) fi. This returns m different
optimized control sequences for the sampled design1.

3) Learning Phase: Given sampled batch of designs Sb =
{di} and weights W = {ω j}, we first compute the target
heuristic value V̂i j for each design-weight combination. Then
we train our universal heuristic function by using Adam [34]
to minimize the following loss function:

∑
i, j
‖V(di,ω

j)− V̂i j‖2
2 (1)

The target heuristic value V̂ is computed by maintaining a
Pareto front of rewards for each partial design to keep track
of the optimal terminal designs can be induced from it.

B. Universal Multi-Objective Heuristic Function

Our heuristic function is a graph neural network which
maps robot morphologies to output vectors of predicted
rewards. The morphology is represented as a graph, where
each node corresponds to a link of the robot (and whose
corresponding feature vectors describe their geometric and
inertial properties), and each edge corresponds to a joint,
thus encoding the topology. The architecture used is based
on the differentiable pooling architecture presented by [35].

1If fi does not depend on the robot’s motion (e.g. the design complexity
objective in section V), this process can be skipped for that objective.

We wish for this network to operate on both a robot
morphology as well as a weight vector as input; however,
this architecture only handles graphs. In order to learn latent
representations in the network which include the effects of
the objective weights, we include ωωω as additional features to
each node in the graph. Finally, we modify the final linear
operator of the network to output m channels instead of one,
thus providing a multi-objective output space of the heuristic.

C. Other Improvements

We include the following further modifications which
improve sample efficiency:

1) DAG-Based Target Updates: In [1], when a design is
evaluated, its value is propagated up the derivation path to
update the target value of the partial designs that generated
it. Realizing the design rules actually form a directed acyclic
graph (DAG) — each partial or complete design can have
many rule sequences that generate it — we now perform
the upward propagation procedure even on non-evaluated
designs, which provides an opportunity to merge previously
visited partial designs up newly discovered branches of
the DAG. This simple refinement vastly improves sample
efficiency by improving the accuracy of the computed target
values.

2) Invalid Design Marking: Although the grammar is
designed to avoid invalid designs, they still can occur. Once
we know a design is invalid, however, we need not visit it
again. We mark all invalid designs as such, and remove them
from the pool of candidates to generate. If all designs that
could be generated by a partial design are invalid, we further
mark that partial design as invalid in an upward propagation
scheme similar to the DAG-based update.

D. Implementation

Despite MOGHS requiring many samples over design
and control, the algorithm provides many opportunities for
parallelization over CPU cores, thus keeping it practical.
First, MOGHS samples many designs in parallel, which can
be parallelized over many CPU cores. Second, the main bot-
tleneck of MOGHS is the evaluation phase; fortunately, our
MPC algorithm is sampling-based; this sampling procedure
can also be parallelized over CPU cores to improve effi-
ciency. Finally, the learning procedure can be accelerated by
batching MNW samples in parallel. Running 2000 episodes of
MOGHS takes approximately 20 hours on a 64-core Google
Cloud machine, and the breakdown for each phase is around
3 hours (using 16 cores) for the design phase, 11 hours (using
64 cores) for the MPC evaluation phase, and 6 hours (using
1 core) for the learning phase.

V. EXPERIMENTS

We compare the Pareto fronts discovered by three algo-
rithms: 1) a random baseline, in which designs are sam-
pled by randomly selecting rules until a terminal design is
generated , 2) The discrete weights method proposed in IV,
which is a discrete version of our MOGHS algorithm, and
3) our MOGHS algorithm. We use the same total MPC
evaluation budget (i.e. number of evaluated designs) for
all three algorithms. We demonstrate our algorithm on six

Algorithm 1 Multi-Objective Graph Heuristic Search
Inputs: Number of iterations N, number of candidate designs K,
Adam optimization steps opt iter and batch size M, number of
sampled weights Nw.
Output: A set of Pareto-Optimal designs P.
Initialize the universal graph neural network Vθ (d,ωωω).
Initialize the Pareto-Optimal design set P←{}.
for episode j← 1 to N do

B Design Phase: Generate a candidate design
Sample a preference weight ωωω .
C←{} B Initialize possible design candidates
B Sample K designs by ε-greedy approach
for k ← 1 to K do

d← initial design graph
while d has non-terminals do

With probability ε select a random rule a, otherwise
select a = argmaxa ωωω ·Vθ (d′,ωωω), where d′ is the robot
design after applying rule a on design d.
d← d′

end while
Add possible candidate d to C.

end for
B Choose one to be the candidate
With probability ε select a random sampled design d from C,
otherwise select d = argmaxd∈C ωωω ·Vθ (d,ωωω).
B Evaluation Phase: Compute the rewards for the design
Run MPC in parallel for each task to evaluate the rewards
vector ~r of design d.
B Update the design Pareto set
Update P by d and ~r.
B Learning Phase: train heuristic value function Vθ

for i ← 1 to opt iter do
Sample a minibatch Sb of seen designs (partial or complete)
of size M.
Sample Nw preference weights W = {ωωω j}.
Compute target values for each s ∈ Sb and ωωω ∈W ,

V̂(s,ωωω) = argmax
d∈descendant(s)

ωωω ·~r(d)

Update Vθ (s,ωωω) one step by Adam with the loss:

∑
s∈Sb,ωωω∈W

‖Vθ (s,ωωω)− V̂(s,ωωω)‖2

end for
end for

combinations of seven tasks, and compare each solution
set qualitatively and quantitatively; please see the video for
demonstrations of robots along the discovered Pareto fronts.

Flat Terrain Locomotion: In this task, the robot is re-
warded for the forward running speed, and we assign addi-
tional reward to encourage stability in the forward direction.

Low Power Flat Terrain Locomotion: The same as the Flat
Terrain task, except the maximum impulse of the motors is
set to 20% of that normally available. This task highlights
locomotion in scenarios when power must be conserved.

Wall Terrain Locomotion: Also the same as the Flat
Terrain task, however, slalom-like walls are added to the
terrain. Successful robots must run forward with the ability
to move somewhat laterally to navigate terrain.

Jumping: In this task, the robot must jump as high as
possible. The reward is set proportional to the height of the
lowest part of the robot. As before, an additional reward is
added to discourage the robot from falling over.

Spin-In-Place: This task tests the agility of the robot
around the vertical axis. The reward is set proportional to
the angular velocity of the robot around the vertical axis.

Design Complexity: The first of two tasks that is purely
design-dependent (does not involve control), the reward is set
inversely proportional to the number of links in the robot.

Robot Height: The second pure design task, the reward is
set proportional to the height of the robot, with a penalty for
changes in pitch, promoting tall, upright robots.

A. Experimental Setup
We run each experiment for 2000 episodes. For each

task combination, we run each algorithm three times. In
comparing metrics in Table I, we compute the metric by
averaging over all runs for that algorithm. For metrics that
require a reference set, we take the union of all sampled
designs of all runs of all algorithms, and compute its Pareto
front. Hyperparameters used for the MOGHS algorithm are
the same as GHS [1], with the preference weight minibatch
size NW set to 10. For the discrete weights algorithm, we
sample 11 uniform weights in the two-objective cases (we
did not consider this baseline in the three-objective case).

B. Results
We numerically evaluate the optimized Pareto fronts on

three metrics, commonly used in the multi-objective op-
timization literature [36]: Hypervolume, Generational Dis-
tance, and Inverse Generational Distance. We present some
Pareto fronts in Fig. 4, along with some selected designs. We
encourage the reader to watch the video for more renderings
of optimized Pareto fronts, and animations of the designs
that populate them.

a) Hypervolume [37]: The hypervolume metric (HV)
measures the hypervolume of the polytope defined by the
space enclosed by the hyperplanes created by the axes along
the first orthant and the hull of the sampled points. As is
visually evident, a larger HV is better.

b) Generational Distance [38]: The generational distance
(GD) of a Pareto front P is defined as:

GD(P) =
1
|P|

(∑
p∈P

min
r∈R

d(p,r)p)
1
p (2)

where p is a norm (we choose 1), d is the Euclidean distance
function, each pi is a point in P, and the set R is a reference
set generated by combining results from all optimization
experiments. A smaller GD is better.

c) Inverse Generational Distance [39]: The inverse gen-
erational distance (IGD) is defined as:

IGD(P) =
1
|R| ∑r∈R

min
p∈P

d(r,p) (3)

Again, a smaller IGD is better. Roughly speaking, GD
measures the distance of all points on the captured Pareto
front to the best known Pareto front, while IGD measures
the distance of all points on the best known Pareto front to
the captured Pareto front.

Numerical results are presented in Table I. As can be
seen in MOGHS dominates discrete weights in all task
combinations across all metrics, often by significant margins.

(2.9, 7.8) (4.7,6.6)

(5.5, 6.0) (7.1, 4.2)

(5.0, 9.4) (5.4, 6.3)

(6.3, 4.9) (6.4, 3.6)

(5.4, 4.9) (5.8, 4.6)

(6.2, 4.3) (6.6, 4.1)

(4.1, 9.9) (5.2, 6.5)

(5.3, 5.9) (7.3, 4.4)

Fig. 4. Pareto front comparison of four of our two-objective experiments, and example designs from the Pareto front. MOGHS produces more diverse
and better performing results than discrete weights or the random baseline.

Discrete weights, in turn tends to beat the random baseline,
but not as consistently. The consistency and quality of results
returned by MOGHS emphasizes the importance of this
method. Qualitatively, MOGHS’s Pareto fronts, as seen in
Fig. 4 tend to yield better performing objective trade-offs
than other methods, while maintaining dense coverage.

The morphologies and motions of the designs found on
the Pareto fronts of each problem are physically principled,
but still interesting and exciting. We consider four of the
two-objective trade-offs here. We leave the Design-Height
problem, which serves as a benchmarking example, and
the complex three-objective Flat-Jump-Spin task, which is
better visualized animated, for the video. For example, in the
Flat-Design task, a wide spectrum of robots from a single
link (simplest design but no motion) to long, complex, fast,
walkers are recovered. Along the way, various slower walkers
with fewer links are found along the front, with increasingly
dynamic motions. The Flat-LowPower task measures robots
in various stages of power consumption. In the low power
configuration, the robot is unable to balance if the legs are too
wide, due to the increase gravitational torque on the torso.
This leads to poor forward locomotion. However, longer legs
lead to faster strides for the normal power state robots. The
trade-off provides a spectrum of robots of varying width and
compactness, trading off the importance of being effective
at forward locomotion in the two power states. The Flat-
Spin trade-off produces a very exciting and surprising result,
as faster spinners trade off forward locomotion skill for an
ability to spin in a top-like fashion. The fastest spinners
possess motions that resemble breakdancing. The Wall-Jump
robots meanwhile transition from maneuverable walkers to
increasingly frog-like morphology with increased capacity to
hop.

VI. CONCLUSION

We have demonstrated methods for co-designing robots
over morphology and control over multiple objectives. Our
multi-objective graph heuristic search is first of its kind,

TABLE I
A comparison of the three numerical metrics among all three algorithms

presented. For each problem, metrics are presented in the following order:
HV, GD, IGD. Bolded numbers mean that column’s algorithm performed
best for that algorithm/problem combination. MOGHS outperforms other

methods in all metrics across all problems

PROBLEM MOGHS D. WEIGHTS RANDOM

Design-Height
Hv 64.70 52.43 51.60
GD 0.04 0.45 0.29
IGD 0.28 1.02 0.96

Flat-Design
Hv 46.30 42.25 39.11
GD 0.10 0.29 0.31
IGD 0.19 0.41 0.56

Flat-Spin
Hv 49.94 46.90 29.88
GD 0.34 0.40 1.35
IGD 0.37 0.50 1.79

Flat-LowPower
Hv 29.94 28.03 22.25
GD 0.04 0.26 0.92
IGD 0.08 0.28 1.07

Wall-Jump
Hv 57.95 54.09 44.11
GD 0.37 0.73 1.23
IGD 0.36 0.64 1.15

Flat-Jump-Spin
Hv 307.68 - 166.71
GD 0.22 - 1.09
IGD 0.38 - 1.69

and extracts far superior Pareto fronts with higher efficiency
than more naı̈ve methods. The tasks demonstrated, including
running, jumping, spinning, and obstacle navigation have
direct practical value in real-world terrestrial agile robots.

There remain important avenues for future research. First,
all examples demonstrated in this paper were tested in sim-
ulation. A study fabricating these designs and demonstrating
their physical accuracy would be valuable. Second, all exam-
ples presented in this paper were for two or three objective
trade-offs. It would be interesting to see if this algorithm
would scale to higher objective spaces. Finally, although we
have demonstrated our algorithm for robotics, most of our
method should be general to any grammar-defined domain,
excepting the evaluation (control) procedure and choice of
heuristic architecture. Extensions of our algorithm to other
domains would demonstrate further value of our approach.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful
comments in revising the paper. This work is supported
by Intelligence Advanced Research Projects Agency (grant
No. 2019-19020100001), and Defense Advanced Research
Projects Agency (grant No. FA8750-20-C-0075).

REFERENCES

[1] A. Zhao, J. Xu, M. K. Luković, J. Hughes, A. Spielberg, R. Daniela,
and W. Matusik, “Robogrammar: Graph grammar for terrain-optimized
robot design,” ACM Transactions on Graphics (TOG), vol. 39, no. 6,
2020.

[2] M. Ashby, “Multi-objective optimization in material design and selec-
tion,” Acta materialia, vol. 48, no. 1, pp. 359–369, 2000.

[3] X. Liao, Q. Li, X. Yang, W. Zhang, and W. Li, “Multiobjective opti-
mization for crash safety design of vehicles using stepwise regression
model,” Structural and multidisciplinary optimization, vol. 35, no. 6,
pp. 561–569, 2008.

[4] S. Fettaka, J. Thibault, and Y. Gupta, “Design of shell-and-tube heat
exchangers using multiobjective optimization,” International Journal
of Heat and Mass Transfer, vol. 60, pp. 343–354, 2013.

[5] C. A. Nicolaou and N. Brown, “Multi-objective optimization methods
in drug design,” Drug Discovery Today: Technologies, vol. 10, no. 3,
pp. e427–e435, 2013.

[6] K. Deb, Multi-objective optimization using evolutionary algorithms.
John Wiley & Sons, 2001, vol. 16.

[7] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii,” in International conference on parallel problem solving from
nature. Springer, 2000, pp. 849–858.

[8] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[9] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation
for multi-objective optimization,” Evolutionary computation, vol. 15,
no. 1, pp. 1–28, 2007.

[10] G. Eichfelder, “An adaptive scalarization method in multiobjective
optimization,” SIAM Journal on Optimization, vol. 19, no. 4, pp. 1694–
1718, 2009.

[11] A. Schulz, H. Wang, E. Grinspun, J. Solomon, and W. Matusik,
“Interactive exploration of design trade-offs,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, pp. 1–14, 2018.

[12] Z. Gábor, Z. Kalmár, and C. Szepesvári, “Multi-criteria reinforcement
learning,” in Proceedings of the Fifteenth International Conference on
Machine Learning. Morgan Kaufmann Publishers Inc., 1998, pp.
197–205.

[13] S. Mannor and N. Shimkin, “The steering approach for multi-criteria
reinforcement learning,” in Advances in Neural Information Process-
ing Systems, 2002, pp. 1563–1570.

[14] S. Parisi, M. Pirotta, N. Smacchia, L. Bascetta, and M. Restelli, “Policy
gradient approaches for multi-objective sequential decision making,”
in 2014 International Joint Conference on Neural Networks (IJCNN),
July 2014, pp. 2323–2330.

[15] K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for multi-
objective optimization,” arXiv preprint arXiv:1906.02386, 2019.

[16] J. Xu, Y. Tian, P. Ma, D. Rus, S. Sueda, and W. Matusik, “Prediction-
guided multi-objective reinforcement learning for continuous robot
control,” in Proceedings of the 37th International Conference on
Machine Learning, 2020.

[17] A. Abels, D. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher,
“Dynamic weights in multi-objective deep reinforcement learning,” in
International Conference on Machine Learning, 2019, pp. 11–20.

[18] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm
for multi-objective reinforcement learning and policy adaptation,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
Eds. Curran Associates, Inc., 2019, pp. 14 610–14 621.

[19] K. Sims, “Evolving 3d morphology and behavior by competition,”
Artificial life, vol. 1, no. 4, pp. 353–372, 1994.

[20] G. S. Hornby, H. Lipson, and J. B. Pollack, “Generative represen-
tations for the automated design of modular physical robots,” IEEE
transactions on Robotics and Automation, vol. 19, no. 4, pp. 703–719,
2003.

[21] T. Wang, Y. Zhou, S. Fidler, and J. Ba, “Neural graph evo-
lution: Towards efficient automatic robot design,” arXiv preprint
arXiv:1906.05370, 2019.

[22] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, “Unshackling
evolution: evolving soft robots with multiple materials and a powerful
generative encoding,” in Proceedings of the 15th annual conference
on Genetic and evolutionary computation, 2013, pp. 167–174.

[23] N. Cheney, J. Clune, and H. Lipson, “Evolved electrophysiological
soft robots,” in Artificial Life Conference Proceedings 14. MIT Press,
2014, pp. 222–229.

[24] F. Corucci, N. Cheney, H. Lipson, C. Laschi, and J. Bongard, “Evolv-
ing swimming soft-bodied creatures,” in ALIFE XV, The Fifteenth
International Conference on the Synthesis and Simulation of Living
Systems, Late Breaking Proceedings, vol. 6, 2016.

[25] K. Wampler and Z. Popović, “Optimal gait and form for animal
locomotion,” ACM Transactions on Graphics (TOG), vol. 28, no. 3,
pp. 1–8, 2009.

[26] A. Spielberg, B. Araki, C. Sung, R. Tedrake, and D. Rus, “Functional
co-optimization of articulated robots,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
5035–5042.

[27] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Joint optimiza-
tion of robot design and motion parameters using the implicit function
theorem.” in Robotics: Science and systems, 2017.

[28] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter, “Jointly learn-
ing to construct and control agents using deep reinforcement learning,”
in 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 9798–9805.

[29] M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski, and S. Coros,
“Skaterbots: Optimization-based design and motion synthesis for
robotic creatures with legs and wheels,” ACM Transactions on Graph-
ics (TOG), vol. 37, no. 4, pp. 1–12, 2018.

[30] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu,
D. Rus, and W. Matusik, “Chainqueen: A real-time differentiable
physical simulator for soft robotics,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 6265–6271.

[31] A. Spielberg, A. Zhao, Y. Hu, T. Du, W. Matusik, and D. Rus,
“Learning-in-the-loop optimization: End-to-end control and co-design
of soft robots through learned deep latent representations,” in Advances
in Neural Information Processing Systems, 2019, pp. 8284–8294.

[32] S. Ha, S. Coros, A. Alspach, J. M. Bern, J. Kim, and K. Yamane,
“Computational design of robotic devices from high-level motion
specifications,” IEEE Transactions on Robotics, vol. 34, no. 5, pp.
1240–1251, 2018.

[33] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via
model-based control,” arXiv preprint arXiv:1811.01848, 2018.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[35] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pool-
ing,” in Advances in neural information processing systems, 2018, pp.
4800–4810.

[36] T. Chen, M. Li, and X. Yao, “How to evaluate solutions in pareto-based
search-based software engineering? a critical review and methodolog-
ical guidance,” arXiv preprint arXiv:2002.09040, 2020.

[37] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
a comparative case study and the strength pareto approach,” IEEE
transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271,
1999.

[38] D. A. Van Veldhuizen, “Multiobjective evolutionary algorithms: clas-
sifications, analyses, and new innovations,” AIR FORCE INST OF
TECH WRIGHT-PATTERSONAFB OH SCHOOL OF ENGINEER-
ING, Tech. Rep., 1999.

[39] C. A. Coello Coello and M. Reyes Sierra, “A study of the paral-
lelization of a coevolutionary multi-objective evolutionary algorithm,”
in MICAI 2004: Advances in Artificial Intelligence, R. Monroy,
G. Arroyo-Figueroa, L. E. Sucar, and H. Sossa, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 688–697.

http://arxiv.org/abs/1412.6980

	Introduction
	Related Work
	Multi-objective Optimization
	Multi-Objective Control Optimization
	Robot Co-Design

	Preliminaries
	Method
	Multi-objective Graph Heuristic Search
	Design Phase
	Evaluation Phase
	Learning Phase

	Universal Multi-Objective Heuristic Function
	Other Improvements
	DAG-Based Target Updates
	Invalid Design Marking

	Implementation

	Experiments
	Experimental Setup
	Results

	Conclusion
	References

