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Fig. 1. Our method allows users to optimize designs based on a set of performance metrics. Given a design space and a set of performance evaluation functions,
our method automatically extracts the Pareto set—those design points with optimal trade-offs. We represent Pareto points in design and performance space
with a set of corresponding manifolds (left). The Pareto-optimal solutions are then embedded to allow interactive exploration of performance trade-offs (right).
The mapping from manifolds in performance space back to design space allows designers to explore performance trade-offs interactively while visualizing the
corresponding geometry and gaining an understanding of a model’s underlying properties.

Typical design for manufacturing applications requires simultaneous op-

timization of conflicting performance objectives: Design variations that

improve one performance metric may decrease another performance metric.

In these scenarios, there is no unique optimal design but rather a set of de-

signs that are optimal for different trade-offs (called Pareto-optimal). In this

work, we propose a novel approach to discover the Pareto front, allowing de-

signers to navigate the landscape of compromises efficiently. Our approach

is based on a first-order approximation of the Pareto front, which allows

entire neighborhoods rather than individual points on the Pareto front to

be captured. In addition to allowing for efficient discovery of the Pareto

front and the corresponding mapping to the design space, this approach

allows us to represent the entire trade-off manifold as a small collection of

patches that comprise a high-quality and piecewise-smooth approximation.

We illustrate how this technique can be used for navigating performance

trade-offs in computer-aided design (CAD) models.
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1 INTRODUCTION
In typical manufacturing applications, design goals are measured by

how the finished products perform in the physical world. Design is

driven by objectives such as weight, stability, durability, compliance,

and other functionality-related metrics. Directly specifying designs

that optimize performance objectives is challenging since it requires

predicting physical behavior. For this reason, performance-driven

computational methods are critical and have been widely explored

in recent research on manufacturing-oriented design. These ap-

proaches guide users in efficiently exploring design spaces while

optimizing for a given performance objective, which can be mea-

sured using physical simulations.

A fundamental limitation of typical design optimization tech-

niques is that they require a single objective function for evaluating

performance. In most applications, however, multiple criteria are

used to evaluate the quality of a design. Structures must be stable

and lightweight. Vehicles must be aerodynamic, durable, and inex-

pensive to produce. In most cases, the performance objectives are

not only multiple but also conflicting: improving a design on one axis

often decreases its quality on another axis. In reality, designers and

engineers navigate a complex landscape of compromises, generating

objects that perhaps do not optimize any single quality measure but

rather are considered optimal under a given performance trade-off.

Since it is impossible to optimize more than one criterion at a

time, standard optimization approaches require expressing a set of

performance criteria in a combined objective function that balances
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incompatible features. The typical approach is to use weighted

combinations of different performance metrics. For example, in the

case where there are two performance metrics, an objective could be

expressed as α f1(x) + (1 − α)f2(x), where the fi ’s are performance

functions defined on the design space and 0 ≤ α ≤ 1 is a proxy for

the trade-off between f1 and f2.
Unfortunately, such a proxy fails to capture the full space of

optimal design trade-offs, called the Pareto set. A design point is

Pareto-optimal if an adjustment to the design cannot simultaneously

improve all performance metrics; any improvement to one metric

necessarily worsens another. If F (x) = (f1(x), f2(x)) is a function
that maps the design space onto the performance space, then F maps

the Pareto set onto the Pareto front. While themain task of a designer

might be considered navigation of the Pareto front, its shape is

typically nonlinear and even disconnected. Linear changes in α do

not correspond to linear, or even continuous, changes on the Pareto

front (see Figure 4). For this reason, guessing a reasonable α , or
sampling over α , can be imprecise, unstable, or even intractable.

Furthermore, the introduction of new performance metrics renders

any previous choice of α obsolete.

Instead of using proxy objectives, we seek to discover, represent,

parameterize, and explore the Pareto front directly. In our approach,

the Pareto front discovery is done in a pre-computation step, and

the resulting representation is used to define an interactive tool that

allows users to navigate the complex trade-offs between multiple

performance metrics and instantaneously find corresponding de-

signs. The main challenge in creating this representation is that

finding all Pareto points requires on the one hand exploring the

diverse solutions that correspond to different trade-offs and on the

other hand converging to solutions in each particular direction to

find points that are optimal in the Pareto sense.

From a technical perspective, our algorithm is built upon a first-

order approximation of the Pareto front derived from duality theory

inmulti-objective optimization. This approximation serves two roles.

First, it enables exploration of the Pareto front near a single point

once it has been discovered. Second, it efficiently captures a region
of the Pareto front, allowing us to approximate the entire front with

just a few continuum pieces instead of a dense set of sample points.

Each continuum piece also stores a mapping to the Pareto set in

the design space. The end result is a technique that discovers the

Pareto front and represents it as a union of relatively few manifold

pieces that can be stored and queried efficiently within an interactive

design tool that presents the designer with only the relevant (Pareto
optimal) set of designs. Our representation is well-suited for the

nonlinear and possibly disconnected nature of the Pareto front.

We evaluate our algorithm against the well-established ZDT

benchmark suite [Zitzler et al. 2000] for multi-objective optimiza-

tion, which covers a broad range of realistic geometric forms for

the Pareto front and Pareto set. We then demonstrate our software

tool in the context of interactive design based on real-world CAD

models.

2 RELATED WORK
Performance-driven design. In many manufacturing applications,

design specifications are determined by how they affect the per-

formance of the resulting model. Design for functionality means

finding the optimal configuration for a set of performance objec-

tives. This requires solving inverse problems that are challenging

in large design spaces. Previous works address these challenges

with two main approaches: exploration with iterative feedback and

direct optimization. From furniture design [Umetani et al. 2012],

to model airplanes [Umetani et al. 2014] and robots [Megaro et al.

2015], exploration tools allow users to navigate a design space with

real-time feedback on performance. On the other hand, optimization

approaches directly determine a final configuration that achieves

desirable properties, such as structural stability [Prévost et al. 2013;

Whiting et al. 2012], frequency spectra [Bharaj et al. 2015], mo-

tion [Bächer et al. 2015; Du et al. 2016], or buoyancy [Musialski et al.

2015].

Optimization has the advantage of being automatic, while user

exploration can be time-consuming. Exploration tools, however,

are advantageous when multiple considerations are taken into ac-

count. In such scenarios, it is challenging, if not impossible, to

determine a single objective function for direct optimization; there-

fore, an exploration interface can more effectively guide users to

solutions with desired performance trade-offs. Our approach com-

bines the advantages of both techniques. We use offline optimiza-

tion to reduce the search space to solutions that achieve optimal

performance trade-offs. We then define an exploration interface

that allows users to search in this subset. This approach lets us

handle problems with multiple performance objectives while reduc-

ing the amount of user effort during exploration, since the search

spaces are smaller and all discovered solutions are Pareto-optimal.

While multi-objective optimization approaches that discover a set

of Pareto-optimal points have become increasingly common in en-

gineering practice [Agrawal and van de Panne 2013; Bandaru and

Deb 2015; Deb and Srinivasan 2006], in this work we propose a

novel technique that finds a sparse representation of the full front,

allowing for interactive exploration of design trade-offs.

Performance Space Exploration. Recent works on design explo-

ration propose pre-computing the performance metrics on a con-

strained design space to provide real-time performance feedback as

users explore variations in the design space [Schulz et al. 2017; Shug-
rina et al. 2015; Yau et al. 2006]. While these works enable efficient

exploration of models that can be parametrized with a small set of

parameters, their main limitation is that by sampling in the design

space they suffer the curse of dimensionality and cannot be used in

applications where design spaces are high-dimensional. In this work,

we argue that in designing for functionality, it is not necessary to

represent the full design space since only a subset of solutions will

correspond to optimal design trade-offs. By representing only this

subset, which lies in a much lower dimensional performance space,
our approach can not only scale to large design spaces but also

allows for a more meaningful exploration based on performance

trade-offs.
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Our approach is also related to works on material design that use

pre-computation to find the gamut of achievable material proper-

ties [Bickel et al. 2010; Dong et al. 2010; Zhu et al. 2017]. In these

works, the design space is the set of materials that can be output by

a given device, and the performance metrics are the material prop-

erties that are evaluated. Our approach is the most similar to [Zhu

et al. 2017], which combines a probabilistic search and a continu-

ous optimization when pre-computing the material gamut. While

our method draws ideas from these approaches, the fundamental

difference is that instead of a gamut that defines all the possible ma-

terial combinations in a d-dimensional material property space, our

application requires defining a combination of (d − 1)-dimensional

manifolds that represents the optimal performance trade-offs.

Multi-Objective Optimization. The task of finding the set of opti-

mal design trade-offs amounts to solving a multi-objective optimiza-

tion problem, where the objectives are the performance metrics.

Numerous methods have been proposed for solving multi-objective

optimization problems. The Normal Boundary Intersection [Das and

Dennis 1998] andNormalizedNormal Constraint [Messac et al. 2003]

methods aim to produce a well-distributed set of solutions, which

can accurately approximate the shape of the Pareto front but can

produce false positive solutions when the problem is non-smooth

and/or contains local minima. Evolutionary algorithms often are

applied to address this issue by iteratively modifying a population

of candidate solutions that undergoes reproduction and removal

similar to natural evolution; see [Zhang and Xing 2017] for a survey.

The main difference between these methods and our approach is

that instead of searching for a diverse set of discrete points, our pro-

posed method provides a compact representation covering contigu-

ous regions within the space of solutions. Our approach leverages

the fact that, while discovering individual points on the Pareto front

can be difficult, locally searching around known solutions is eas-

ier. Using our method we obtain a relatively small set of manifolds

whose union approximates the Pareto front. This representation pro-

vides an easily-navigable set of solutions in both design space and

objective space, which can be applied to visualization and analysis.

3 OVERVIEW
After walking through a concrete example, we lay out the algorithm

in detail.

3.1 Motivating Example
To motivate our choice of mathematical structures and computa-

tional approach, consider designing a wrench. As evidenced by the

size of a standard toolbox, many styles and shapes of wrenches are

potentially useful: Small, lightweight wrenches may be portable and

needed for tweaking small mechanical parts, while larger, heavy-

duty wrenches exert sufficient torque to turn structurally-critical

bolts.

We can measure the quality of a wrench on multiple performance

axes. We may prefer lighter wrenches for portability or powerful

wrenches for applying more torque. These performance objectives

are not harmonious, and hence the engineer designing the wrench

must navigate a space of trade-offs.

A wrench design can be described by certain design parame-
ters, e.g. thickness, material density, and handle width; as a rule of

thumb, these are the parameters that are exposed in a parametric

CADmodel. We restrict ourselves to manufacturable designs, whose

design parameters are compatible with our fabrication process. The

design parameters serve as coordinates for the design space of po-
tential wrenches. After choosing a specific design, we measure its

mechanical and physical properties and plot them on a set of per-

formance axes: torque, weight, and so on. This procedure yields a

map from design space to performance space.
Some wrench designs are not worth considering. Consider a

heavy, weak wrenchA. Suppose that B is lighter and more powerful

A. We say that B dominates A. There is never a reason to manufac-

ture wrench A: the dominating wrench is preferable in terms of all

metrics. On the other hand, if wrench C is more powerful than B
but also heavier, we have a trade-off to navigate.

After eliminating dominatedwrenches, what remains is the subset

of interesting wrenches known as the Pareto set; the image of the

Pareto set in performance space is a lower-dimensional set known

as the Pareto front. Designing a wrench is therefore a navigation

of the Pareto front, seeking the optimal trade-off for a particular

application.

Our goal is to develop a computational tool for this navigation

process. We provide a technique for efficiently approximating and

visualizing the Pareto front, represented as a collection of smooth

manifolds embedded in performance space. We then expose the

lower-dimensional space of interesting Pareto alternatives in an

efficiently-navigable fashion.

3.2 Outline
The input to our method is a parameterized object (e.g., a wrench)

and a map from the design parameters (e.g., thickness, density) to

the relevant performance metrics (e.g., weight, torque).

To represent the Pareto front succinctly, we derive a first-order

approximation in a local neighborhood of the front (§5). Inspired

by statistical techniques like principal component analysis (PCA)

and canonical component analysis (CCA), we observe that relatively
few of these linear subspaces are needed to capture local variability.
Informed by this observation, we employ the following steps:

• We propose a randomized algorithm for uncovering points on the

Pareto set (§6). Our algorithm is designed to encourage diversity

in the sampling procedure, helping capture the breadth of possible

designs.

• Once a point on the Pareto set is computed, we use our first-order

approximation derived in §5 to capture local variability in the

relationship between design and performance as a small manifold.

• Pareto-relevant points and their associated manifold approxima-

tions are stored in a performance buffer that efficiently tracks and

updates its estimate of the front (§6.1).

• Once sampling has converged, we are left with a performance

buffer full of manifold approximations of the Pareto front. We use

a graph cut technique to sparsify our approximation of the front.

The end result is a small collection of manifolds that comprises a

high-quality and piecewise-smooth approximation of the trade-off

manifold (§6.4).
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• The dimensionality of the Pareto front generally is lower than

the dimensionality of performance space. Hence, we propose a

technique for embedding and navigating just the Pareto front,

quickly revealing a diverse set of interesting designs (§6.5).

Beyond testing on engineering problems, we also test our algorithm

on a standard benchmark of optimization problems from the multi-

objective optimization literature (§7.1), verifying that we have not

only an effective engineering tool but also an efficient technique for

challenging multi-objective sampling problems.

4 MATHEMATICAL PRELIMINARIES
In this section, we introduce the mathematical toolbox that formal-

izes the idea of trade-offs in an engineering context. This quick sum-

mary establishes the notation we need in our paper; for a broader

discussion we refer the reader to [Deb and Deb 2014].

Design Space Performance Space

𝐹(𝑥)

ℝ𝐷
ℝ𝑑

𝒳

Pareto FrontPareto Set

𝐹(𝒳)

Fig. 2. The Pareto set represents the points in design space with optimal
performance trade-offs that get mapped to the Pareto front in performance
space. Different colors indicate different manifolds in design and perfor-
mance space with a one-to-one mapping. Any ray from the origin (blue line)
can only intersect the Pareto front once.

4.1 Definitions
The set of exposed parameters for an engineering model is known

as the design space:

Definition 4.1 (Design space and constraint). The design space X
for a multi-objective problem is defined as a subset of RD of feasible

points:

X := {x = (x1, . . . ,xD ) ∈ RD : дj (x) ≤ 0 ∀j ∈ {1, . . . ,K}}.
Here, each function дj represents a single constraint on x. We use

G(x) : RD → RK to denote the concatenation (д1(x), . . . ,дk (x)).
Intuitively, X is the set of all manufacturable objects. Constraints

дj might capture hard constraints identified by the engineer, such

as a limit on the total material available to manufacture an object.

Next, we need a notion of an objective function for optimization:

Definition 4.2 (Performancemetric and space). A set of performance
metric functions fi : RD → R assign real-values to each design

vector x; we use F (x) : RD → Rd to denote the concatenation

(f1(x), . . . , fd (x)). We choose the convention that small values of
fi (x) are desirable for metric fi . The performance space S is the

image of the design space X under the performance metrics:

S := F (X) ⊆ Rd .

The performance metric functions are often complex and com-

putationally intensive. Multi-objective problems typically involve

multiple performance metrics (d ≥ 2), e.g. weight, torque, and other

measures; typically d ≪ D.
Our algorithm reveals only those points in design and perfor-

mance space that are not out-performed on every axis by some

other design:

Definition 4.3 (Pareto optimality). A point x ∈ X is Pareto optimal
if there does not exist any x′ ∈ X so that fi (x) ≥ fi (x′) for all i and
fi (x) > fi (x′) for at least one i . The set of all Pareto-optimal points

is the Pareto set P ⊆ RD ; the image F (P) ⊆ Rd is the Pareto front.

4.2 KKT Conditions
Our algorithm pre-computes F (P) and represents it compactly to

allow for fast exploration and optimization. We represent F (P) as
a union of (d − 1)-dimensional manifolds. As we will show, for

(almost) any point x ∈ P, there is a local neighborhood B(x) such
that F (P) ∩ B(x) is a (d − 1)-dimensional manifold in Rd ; we store
F (P) as the union of a sparse set of simple manifold approximations.

Intuitively, this approximation is justified as follows. From the

definition of Pareto optimality, if a point x ∈ X is Pareto optimal,

then there is no other point whose performance is not worse than

x in every metric and better than x in at least one metric. Hence,

we can draw a ray in performance space along which there can

be at most one Pareto optimal point, illustrated in Figure 2. This

effectively extracts just points on the boundary of the Pareto front,

a lower-dimensional set and justifies the following proposition:

Proposition 4.4. For every nonnegative α ∈ Rd , there exists at
most one t > 0 such that tα ∈ P.

We parameterize this set using a “performance buffer,” defined in

§6.1.

This lower-dimensional observation is justified by the theory of

KKT conditions from multi-objective optimization. Following [Deb

and Deb 2014], we denote Pareto-optimal points as solution of the

primal problem notated

minx { fi (x)}
s.t. x ∈ X. (1)

Standard approaches to multi-objective optimization aim at find-

ing solutions to this primal problem. The main challenge is that the

space of solutions that are Pareto-optimal is large, disconnected, and

prone to local minima. Typical approaches use genetic algorithms

to find solutions that are diverse and optimal [Zhou et al. 2011].

On a high level, these methods try to reach the Pareto front by

searching in different directions and using randomization to avoid

local minima.

Inspired by primal-dual algorithms in optimization, the key in-

sight in our approach is that while discovering a single point on

the Pareto set is challenging, once a point has been found it can

be used to uncover a large Pareto region on its neighborhood. Our

approach is to consider a dual problem, defined by the so-called

KKT conditions:

Proposition 4.5 (KKT conditions [Hillermeier 2001]). As-
suming that fi and дk are continuously differentiable and that the
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vectors {∇дk ′(x∗) | k ′is an index of an active constraint} are linearly
independent, then for any solution x∗ to Equation 1 there exist dual
variables α ∈ Rd and β ∈ RK such that

x∗ ∈ X
αi ≥ 0 ∀i ∈ {1, . . . ,d}
βk ≥ 0 ∀k ∈ {1, . . . ,K}
βkдk (x∗) = 0 ∀k ∈ {1, . . . ,K}∑d
i=1 αi = 1∑d
i=1 αi∇fi (x∗) +

∑K
k=1 βk∇дk (x

∗) = 0


(2)

It is worth noting that KKT conditions are necessary but not suffi-

cient, so we must a posteriori check that candidate points satisfying

these conditions are indeed Pareto-optimal. This check is extremely

efficient thanks to our performance buffer. The KKT conditions

verify that at least locally the Pareto front is (d − 1)-dimensional,

thanks to the constraint on the sum of α .

5 FIRST-ORDER APPROXIMATION
We begin our technical discussion by motivating a first-order ap-

proximation of the Pareto front. This formula is a straightforward

corollary of the KKT conditions in Proposition 4.5; conceptually, it

characterizes the proper directions to walk in design and perfor-

mance space to maintain Pareto optimality after a single Pareto

point is found. This formula can be understood as a source of effi-

ciency for our algorithm relative to other sampling algorithms, since

entire neighborhoods rather than individual points on the Pareto

front are captured.

We state our condition as follows:

Proposition 5.1 (KKT Perturbation). Suppose x(t) : (−ε, ε) →
RD is in the Pareto set in a neighborhood of t = 0, that is, x(t) ∈ P
for all t ∈ (−ε, ε). Taking α and β to be the KKT dual variables corre-
sponding to x∗ := x(0), under the assumptions from Proposition 4.5
we have

Hx′(0) ∈ Im(DF⊤(x∗)) ⊕ Im(DG⊤K ′(x
∗)). (3)

where

H :=

d∑
i=1

αiHfi (x
∗) +

K ′∑
k=1

βkHдk (x∗).

Furthermore,
DGK ′(x∗)x′(0) = 0. (4)

Here Hu and Du represent the Hessian and Jacobian of a function u,
respectively;DGK ′ indicates the part of the JacobianDG correspond-

ing to the K ′ ≤ K active constraints. We prove this proposition in

Appendix A.

Generically, these define a (d − 1)-directional space of local ex-
ploration directions around x∗. In particular, assuming H is invert-

ible, (3) shows that x′(0) is in a (d + K ′ − 1)-dimensional space; the

−1 comes from the last line of (2), which effectively shows that the

row spaces of DF and DGK ′ are linearly dependent. Equation (4)

reduces the dimensionality by K ′, as needed.

6 PARETO FRONT DISCOVERY
We now define an iterative algorithm for exploring the Pareto front,

constructed from the above perturbation formula. Typical itera-

tive approaches seek a diverse, dense set of solutions (points) that

together approximate the Pareto front. In contrast, our algorithm

represents the front piecewise-continuously as a set of manifolds.

Our algorithm is therefore less sensitive to the uniformity of discov-

ered points, so long as the manifolds expanded from these points

completely cover the Pareto front. Instead, the distribution of points

in our discovery algorithm will depend on the varying sizes and

locations of the generated manifolds in objective space.

6.1 Data Structure
Assuming that performance metrics are positive, any point in the

Pareto front will intersect a positive ray traced from the origin. From

Proposition 4.4, any such ray will intersect at most one point in the

Pareto front. Further, a Pareto point that intersects a given ray will

have minimal distance to the origin when compared to all other

points in performance space S that intersect this ray.

We therefore define the performance buffer as a (d−1)-dimensional

array discretized using (hyper)spherical coordinates (see Figure 3).

Inspired by the z-buffer used in rendering, a basic implementation

of the performance buffer stores at each cell the point with min-

imum distance to the origin that intersects its corresponding ray.

The performance buffer is updated at each iteration of the discovery

algorithm, as new regions of the performance space are found.

Performance Space

ℝ𝑑

Fig. 3. The performance buffer: since a ray from the origin can only intersect
one point in the Pareto front, we use a buffer discretized by (hyper)spherical
coordinates for storage.

To reduce stochasticity of our final result, in practice we extend

the basic implementation by storing a list of candidate solutions at
each buffer cell B(j) , instead of storing only the single solution that

has minimal distance to the origin. These solutions are included

if their distance to the origin is within an allowed tolerance δB of

the minimal distance over all solutions in B(j). Maintaining this set

of solutions is useful for extracting a sparse approximation of the

Pareto front (§6.4), which may forego choosing the closest sample

to the origin at some buffer cells in favor of a simpler set of man-

ifolds covering the front. For performance, we bound the number

of stored solutions per cell, keeping only the top K (K = 50 for all

experiments).

6.2 Discovery Algorithm
6.2.1 Overview. We address diversity and convergence with an

iterative procedure to discover the Pareto front. The algorithm is

composed of three main steps (see Algorithm 3.2 and Figure 4). The

first step is a stochastic sampling scheme that selects samples xis ,
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i = 1, . . . ,NS in the design space X (§6.2.2). The second step is a

local optimization procedure that tries to push each sample xis to a

solution xio on the Pareto set (§6.2.3). For each sample xis , a search
direction s(xis ) ∈ Rd is selected to drive the local optimization

scheme. Diverse directions are used to find a set of solutions that

cover the different regions of the Pareto front. Finally, a first-order
approximation of the Pareto front is extracted around xio (§6.3). The

perturbative formula in §5 is used to generate the D × (d − 1)matrix

Mi
that defines an affine subspace Ai

in design space that goes

though xio .

Design Space Performance Space

𝐹(𝑥)

ℝ𝐷
ℝ𝑑

𝐱𝑠
𝑖

𝐱𝑜
𝑖

F(𝐱𝑠
𝑖 )

F(𝐱𝑜
𝑖 )

𝐬(𝐱𝑠
𝑖 )

Fig. 4. A single iteration of the discovery algorithm: random samples xis
are generated from the current data on the buffer (illustrated in gray) and
optimized for a search direction s(xis ) (blue arrow). A first-order approxima-
tion around the result of this optimization, xio , generates the corresponding
manifolds in both design and performance space (red lines) and the buffer
is updated based on this new data.

The resulting manifold F (Ai ) in performance space is then pro-

jected onto the buffer. If a point on F (x i ) ∈ F (Ai ) is projected onto

the buffer cell B(j) and this point is considered a candidate according
to the tolerance δB , then the buffer is updated. Each cell j on the

buffer stores a list of solutions, each of which contains the point

in design space, the corresponding map to performance space, and

the corresponding affine subspace {(xi , F (xi ),Ai )}i . The algorithm
terminates if the buffer cells’ average distance to the origin is not

improved by δI after NT iterations.

Algorithm 1 Pareto set discovery given performance metrics F and

design constraints that define X.
1: procedure ParetoFrontDiscovery(X, F )
2: B: performance buffer array

3: B(i) ← ∅,∀i
4: do
5: x0s , . . . , x

Ns
s ← stochasticSampling(B, F , X)

6: for each xis do
7: D(xis ) ← selectDirection(B, xis )
8: xio ← localOptimization(D(xis ), F , X)
9: Mi ← firstOrderApproximation(xio , F , X)
10: updateBuffer(B, F (Mi ))
11: if buffer not updated on past Ni iterations then
12: break
13: while within computation budget

14: return B

6.2.2 Stochastic Sampling. We use stochastic sampling to initial-

ize each iteration of the algorithm to avoid local minima. Since the

performance buffer stores the current approximation of the Pareto

front, we use these points as initial guesses. We uniformly sample

buffer cells at random. For each selected cell j, we take the point xj

with minimal distance to the origin and perturb it as follows:

xs = xj +
1

2
δp

dp

where dp is a uniform random unit vector that defines a stochastic

direction and δp is a uniform random number in [0,δP ] used for

scaling. The exponential factor trades off between exploration and

exploitation—small scaling factors are typically preferred to explore

local neighborhoods, but occasional larger values are desired to

diversify the solutions. We clamp the result to ensure xp ∈ X. In
the first iteration, points are sampled uniformly from X.

6.2.3 Local Optimization. Each of the sampled points xs is then
optimized for Pareto optimality. A scalarization scheme is used

to convert this multi-objective optimization problem into a single-

objective problemwhich can be solved for each point. Previous work

on multi-objective optimization proposes assorted scalarization

functions that diversify the solutions across the Pareto front [Das

and Dennis 1998]; diversification is essential to avoid having solu-

tions cluster in certain areas, failing to provide a good representation

for the shape.

We find that the following scalarization function is most effective

in our applications:

xo = argmin

x∈X
∥F (x) − z(xs )∥2 (5)

where z(xs ) ∈ Rd is a reference point defined for each sample. This

quadratic expression is inspired by previous work [Zeleny 1973]

and allows for discovery of solutions on non-convex regions of the

Pareto front.

We use the performance buffer discretization to specify a unit-

length search direction s(xp ) for pushing xs towards the Pareto

front (see Figure 5). This suggests choosing the reference point

z(xp ) as:
z(xs ) = xs + s(xs )C(xs ), (6)

where C(xs ) = δs ∥xs ∥ is a scaling factor depending on the distance

to the origin. This scaling factor is important for diversity since

setting the reference point too far from the Pareto front will make

results cluster around specific solutions.

As shown in Figure 5, the buffer discretization defines a search

direction for each buffer cell j. For further diversity, instead of set-

ting s(xs ) as the search direction for the buffer cell j where xs get
projected, we select the search direction assigned to a cell on the

neighborhood of cell j selected uniformly at random. The neigh-

borhood of a cell is defined by all the cells that are within distance

δN .

6.3 First-Order Approximation
For each point xio , we use the result in Proposition 5.1 to find d − 1
directions for local exploration stored in a matrixMi

.

As discussed in §5, equations (3) and (4) generically define a d − 1
dimensional space. In practice, however, one must consider two
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Performance Space

ℝ𝑑

Fig. 5. Search directions for buffer cells for d = 2. For diversity, different
regions of the performance space get assigned different search directions.
We use the buffer discretization to define these directions as illustrated in
the figure.

special cases: (1) when Im(DF⊤(x∗)) ⊕ Im(DG⊤K ′(x
∗)) is low rank

and (2) when H is low rank.

The first special case occurs when two performance objectives

agree. In this case, the Pareto front locally will be represented by

a manifold with dimensionality smaller than d − 1. Consider, for
example, a two-objective problem where the performance metrics

are the weight and material cost of a single-material model. Since

these objectives are not conflicting, the Pareto front is defined by a

single point where the volume is minimized. Typically this is not

the case for interesting problems in multiobjective optimization

where the challenge is due to conflicting objectives. Therefore, in

our implementation, we assume that this does not happen.

The second special case is more common, since it results from

having design variables that do not affect the performance. While

design variables that do not affect the performance at any configu-

ration can be easily discarded in a pre-processing step, it is common

to have design variables that have overall impact but locally are

ineffective. In such cases, equations (3) and (4) define a space with

dimensionality higher than d − 1. This means that locally the Pareto

set (design space) has higher dimensionality. Since the Pareto front
(performance space) can never have dimensionality greater thand−1
(see Proposition 4.4), however, this means that there are multiple

affine subspaces that locally map to the Pareto front. In our imple-

mentation, we deal with these cases by selecting d − 1 directions
uniformly at random.

6.3.1 Storage. GivenMi
, which defines an affine subspace around

xio , we find an orthonormal frame and uniformly sample on a grid

defined by this frame in design space. We set the grid size to be large

enough to reach the boundaries of X and discard points that are

not in X. We then map all valid points to performance space using

F and project the results onto the buffer. For d = 2, this projection

is done by interpolating line segments, and for d = 3, we define a

triangle mesh and use barycentric coordinates for interpolation.

As previously discussed, the buffer stores all of the solutions that

are within a given tolerance. For each solution (x, F (x),A) mapped

to a cell j in the buffer we compare its distance to the origin with

the minimal distance stored in the solutions for cell j . If the result is
within δB , we append it to the solution list for that cell; otherwise

it is rejected. If the solution is closer to the origin than any other

solution on the buffer, we traverse the list rejecting all candidate

solutions that are no longer within tolerance.

6.4 Sparse Approximation
After the Pareto front has been discovered, the final step is to select

for each cell on the buffer a single solution from the list of candidate

points. Our goal is to assign a unique value to each buffer cell to

minimize discontinuities in design space while maintaining opti-

mality within tolerance. In cases with many design variables, it is

possible to have more than one solution in design space that maps

to the same point in the Pareto front. We aim at selecting between

these solutions so that adjacent buffer cells map to solutions that

are close in design space. Further, we want a sparse set of first-order

approximations that accurately represents the Pareto front.

Since points that are represented by the same first-order approxi-

mation are close in design space, we can optimize for both of these

objectives by solving a labeling problem. Each label l i corresponds
to a linear subspace Ai

on the set of spaces found by the discovery

algorithm. Our goal is to choose a label for each buffer cell j so that:

(1) the label of a cells is similar to the label of its neighbors and (2)

the assigned label for a given cell is on the list of solutions B(j), with
priority given to solutions with smaller distance to the origin. This

can be expressed and solved as a graph-cut problem.

Compared to an approach that takes the best value in each buffer

cell, our graph-cut algorithm finds a sparse set of first-order approx-

imations, providing local continuity at the expense of additional

approximation error. We define the approximation error eA(j, i) as-
sociated to assigning label l i to cell B(j) as the difference between
the distance to the origin of the candidate solution on Ai

and the

minimal distance to the origin of all solutions in B(j). The graph-cut
formulation aims at segmenting the buffer into large continuous

regions while minimizing this error. From the buffer construction,

the error is bounded by a user-defined tolerance, δB . In typical ap-

plications, engineering safety factors should be used to determine

this tolerance.

We use the technique described in [Boykov et al. 2001] and the pro-

vided implementation. The unary term EU (j, i) is set to eA(j, i)/δB
ifAi

is on the list of candidate solutions for B(j) andC
inf

otherwise.

The binary term EB (j,k) is set to 1 for every point if j and k are

within a δR neighborhood from each other. In our experiments, we

set C
inf
= 10 and δRn = 2. A post-processing step is performed to

filter out outliers.

6.5 Visualization
The performance buffer provides a discretization of the points on the

Pareto front but may also contain points that are not Pareto-optimal.

The final step of the algorithm is to remove all buffer cells that fall

into this latter category. This can be done by simply checking for

dominance based on Definition 4.3.

For visualization, we embed the buffer in a (d − 1)-dimensional

space to allow for easy exploration (see Figure 1). For d = 2, the

embedding is a line, and for d = 3 the embedding is a triangle. In

both cases, the extreme points correspond to maximizing a given

performance metric. Since we handle minimization problems, each

metric is optimized at the opposite vertex for d = 2 or edge for d = 3.
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We define a color map for the embedding to highlight different affine

subspaces. We color the embedded shape assigned to each point

as a hue based on the corresponding affine subspace and a value

based on the distance between neighbors. This allows us to see the

transitions in the design space.

The pre-computed one-to-one mapping between piecewise linear

regions in design space and their corresponding manifolds in perfor-

mance space allows us to generate the geometry that corresponds

to each performance trade-off in real time, allowing for interactive

navigation of this embedded space.

7 RESULTS
We have implemented the algorithm above and run experiments

for d = 2 and d = 3 with design parameters varying from D = 3 to

D = 21 depending on the problem. For all of the experiments, we

rescale the problems so that both X ∈ [0, 1]D and F (X) ∈ [0, 1]d
and use the same parameter settings for all experiments: δB = 10

−2
,

δI = 10
−4
, δS = 0.3, δP = 10, and δN = 0.2|B |, where |B | is the

buffer size.

7.1 Experiments
We test the proposed algorithm against a set of well-established

benchmark problems formulti-objective optimization, each of which

covers a number of criteria for discovering the Pareto front.

Fig. 6. Nondominated solutions for various well-established benchmark
problems using our proposed approach. Top two rows: Solutions for the five
real-valued ZDT problems. Bottom row: Solutions for the first three DTLZ
problems with three objectives. Our approach was able to converge to the
ground truth Pareto front in all cases.

The ZDT test suite [Zitzler et al. 2000] is perhaps the most widely-

applied test suite for multi-objective optimization. This is due largely

to the fact that the five real-valued tests in the set cover a broad

range of geometric forms in both the Pareto front and Pareto set

(concave, convex, disconnected). Additionally, these tests highlight

the difficulties of multimodality (presence of multiple local minima)

and, because they have well-defined optimal solutions, they are

easily verifiable. The DTLZ test suite [Deb et al. 2002] offers little

new in the way of geometric complexity, but it does provide the

option to optimize for more than two objectives. This is an espe-

cially rare attribute for well-established test suites and is a crucial

requirement for the scope of our project. In particular, the reference

point mapping and manifold generation become less intuitive for

higher dimensional problems. For this reason, we use the DTLZ

suite to validate and visualize the results of our method in three

dimensions.

Figure 6 shows the results of the points stored in the performance

buffer over the true front which is known for these test functions,

validating that our proposed method manages to converge to the

correct solution for these examples.

These test functions provide an empirical validation that our

method can avoid local minima, discovering the true front even

for multi-objective optimization problems that are designed to be

challenging. Compared to state of the art methods for Pareto front

discovery (according to a recent survey [Zhang and Xing 2017]),

our method generates a collection of manifolds, as opposed to point

samples on the front (see Figure 7 of [Zhang and Li 2007], which

contains an identical experiment to our Figure 6). The computation

time, measured by the number of function evaluations, is at least

comparable to the state of the art. For example, Zhang and Li report

∼10000 function evaluations for ZDT1 with 15 parameters, while

our method uses only 6100 function evaluations. In addition, our

final representation is more compact—since all ZDT benchmark

examples can be represented by a single manifold—and is amenable

to parallelization.

Since the Pareto set for each of the ZDT and DTLZ functions lies

on a single affine subspace, our method recovers the entire front

after finding a single solution that is Pareto-optimal. Therefore, to

stress-test our approach and demonstrate that it can generically

approximate the Pareto front by piecewise linear regions in design

space, we test our method on a “Fourier benchmark”: functions

defined by linear combinations of sines. We define each performance

metric fj as

fj (x) =
D∑
i=1

K∑
k=1

αi,k sin(kxi + Bi,k ), (7)

where αi,k , βi,k ∈ [0, 1] are selected uniformly at random. We ran

experiments for varying numbers of design and performance param-

eters. The results in Figure 7 illustrate the different affine subspaces

that are used to construct the Pareto fronts, denoted in different

colors.

Figure 8 compares our solution to a method that first discovers

Pareto-optimal points and then uses a piecewise-linear interpolation

in design space. Our approach, in addition to discovering points on

the front more efficiently, has the critical advantage of being faithful

to the topology of the front and its relationship to the preimage in

design space (the Pareto set). As shown in the figure, there is no

guarantee that interpolating the preimages of two solutions adjacent

in objective space (blue points) will produce another Pareto-optimal
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Fig. 7. Results for Pareto front discovery on Fourier benchmark. The figure
illustrates how the Pareto front can be covered by a set of individually
smooth regions which are mapped via F from affine subspaces in the de-
sign space. Each corresponding pair in design and performance space is
illustrated in a different color. In high-dimensional cases in design space,
dimensionality-reduction via principal component analysis is applied for
visualization purposes.

solution (red points). Our method for generating space approxima-

tions (Section 6.4) automatically detects these discontinuities in the

Pareto set.

The buffer construction and graph-cut algorithm guarantee that

the results of this sparse approximation are optimal within a toler-

ance (δB ) if each candidate point on B(j) that has minimal distance to

the origin is on the true Pareto front. This result, however, depends

not only on our ability to avoid local minima, which was empiri-

cally validated on the ZDT and DTLZ benchmarks, but also on the

first-order approximation. The quality of the first-order approxi-

mation depends on how well the Pareto set can be approximated

by a linear function. Since the Pareto sets of the ZDT and DTLZ

benchmarks are linear, we quantitatively evaluate the proposed

local linear approximation on the Fourier benchmark. The result

Design Space Performance Space

ℝ3 ℝ2

Fig. 8. A direct piecewise-linear interpolation result of the example shown
on the first row of Figure 7. The optimal solution is chosen from the list of
points at each buffer cell (blue points) and a denser sampling is generated
by linearly interpolating the preimage of neighboring points in performance
space (red points). Since the Pareto front is comprised of distinct manifolds,
the linearly interpolated points have no guarantee of Pareto optimality. For
illustrative purposes, the interpolation is performed on a sparse set of the
discovered solutions.

is shown in Figure 9, which, illustrates how far away the optimal

candidate point x∗j on each buffer cell is from the actual Pareto front.

To measure this distance, we ran an additional local optimization

that tries to push each point x∗j the direction djN normal to the front

at F (x∗j ):

min

x∈X




F (x) − (
F (x∗j ) + δN djN

)


 , (8)

where we set δN = δB = 10
−2
. Figure 9 shows that the approxima-

tion error (distance in performance space) for the problem showed

in the the first row of Figure 7 is below 4.0 × 10−4 in the worst case

and below 10
−5

for over 97% of points. This result shows that for

general functions defined by Fourier series, our method can robustly

approximate the front. This is done by iteratively adding more lo-

cal manifolds until the improvement on an average cell is bellow

δI = 10
−4

(stopping parameter). For the example in Figure 9 each

buffer cell has, on average, 10.42 candidate points, which correspond

to first order approximations that are within error δB = 10
−2

of

each other.

Finally, we show the behavior of our first-order approximation on

the bi-objective Kursawe problem [Kursawe 1991], which has a dis-

connected, asymmetric Pareto front. Figure 10 shows the expanded

curve using our algorithm (red) alongside a number of curves ex-

panded in random directions (gray). Our generated direction in

design space (black) approximates the shape of the true Pareto front

in objective space better than its randomized counterparts that are

not obtained using the perturbative formula.

7.2 Design Applications
We additionally run experiments on several CAD models, each with

a specified set of design and performance metrics. We use three

models from [Schulz et al. 2017] that are assessed using a combina-

tion of pre-computed physical simulations and geometric analysis.

We also experiment with higher-dimensional design spaces using a

twelve-parameter boat parametrized by cage-based deformation [Ju
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Performance Space

Fig. 9. Performance Space Assessment of the approximation error associated
with our first-order expansion method on the example shown on the first
row of Figure 7. Left: plot in performance space of the discovered Pareto
front (grey) and results of the same points after performing an additional
local optimization (maroon). Right: histogram showing the approximation
error for points on the discovered Pareto front.

Performance Space

𝐹(𝐱)

Fig. 10. First-order approximation for a point x on the Pareto front of the
bi-objective Kursawe problem [Kursawe 1991] (true front shown in black).
The first-order approximation defined by our method (red) is compared to
the mapping of affine spaces around x generated using directions chosen
uniformly at random (gray).

et al. 2005] and a twenty-one-parameter lamp designed in CAD.

Figures 1 and 11 show the resulting solutions for each of these ex-

periments in both design space and performance space, along with

the corresponding embedding and (selected) mesh samples. We also

implement a simple interface that provides an interactive visualiza-

tion of geometries corresponding to each point in the embedding

(see the supplemental video).

The top row of Figure 11 shows a wrench example with three

design parameters: handle length, head thickness, and fillet radius

(the rounding along the edges that connects the head to the handle).

The measured performance metrics are stress for a given torque

(maximum von Mises stress computed with FEA, implementation

from [Schulz et al. 2017]), mass, and force required to generate a

given torque. In this example, most of the front can be expressed

as a single affine space where the fillet radius and the length are

maximized. This result is due to the fact that these parameters

have a large impact on minimizing the stress and force for a given

torque, while the negative impact on the mass is largely negligible.

Only in a very small region of the Pareto front do solutions corre-

sponding to a small fillet radius appear. For these regions, the head

and fillet radii are minimized and the optimal trade-offs between

mass and force/torque are achieved by varying the length of the

handle. While the design space for this model is low-dimensional

(only three variables), it highlights the strength of our method in

exposing relationships between design parameters and performance

metrics that are not evident without analysis. Furthermore, it allows

us to simplify the solution space by understanding that there are

only two affine regions in design space which yield Pareto-optimal

performance trade-offs.

The second row of Figure 11 shows a brake hub with three design

variables: the angle of the inner hole, spoke thickness, and the

thickness of the rim. The performance metrics for this model are

stress (calculated by simulating the impact of directional forces and

heat distribution), mass, and heat dissipation (approximated by the

thickness of the rim). Our method highlights a strong discontinuity

in design space represented by the black line that divides the green

patch. Figure 12 shows two models on opposite sides of this divide.

We observe that, while the performance parameters vary smoothly

across this gap, the spoke thickness almost doubles. This result

exposes a property of themeasured stress which depends on both the

heat distribution and directional forces from the brake; the reason

why two very different designs can be so close in performance

space is that the spoke thickness affects the heat distribution and

the force-imposed object deformation in opposite ways. Our method

exposes these different design configurations which, in fact, yield

comparable performance results, providing engineers with a better

understanding of the model’s properties.

The third row of Figure 11 illustrates a bike frame with four de-

sign variables that has been engineered to minimize mass, drag,

and stress. What is interesting about this result is that the embed-

ding is composed of a set of disconnected regions. This happens

because of the geometry of the envelope of F (X). Assuming that F
is continuous and X is connected, the projection of F (X) onto the

buffer is also always connected. As previously discussed, however,

not all points represented by the buffer are Pareto-optimal. For this

example in particular, after we remove the suboptimal point from

the buffer, we are left with a large empty region in the center of

the embedding. These discontinuities in performance space reveal

regions of trade-off where a small variation in design space will

only slightly worsen one metric but significantly improve another.

Such exposed properties can be very useful in aiding designers to

decide between certain success metrics and define trade-offs.

The fourth row of Figure 11 illustrates a toy boat parameterized

by a cage with twelve design variables and two performance metrics.

The performancemetrics are buoyancy (approximated by volumetric

maximization) and drag from a frontal wind. This example shows

how our method can find a locally smooth approximation of the

Pareto front for high-dimensional design space. The resulting boats

all havemaximal length but the shape of the projection onto a frontal

plane varies between solutions that represent different trade-offs

between mass and drag.

Finally, Figure 1 illustrates a lamp with 21 parameters that was

designed using a CAD package. Three parameters are used to define

the position and orientation of each of the lamp’s seven beams. The

performance metrics for this model are: stability (measured by the

distance of the projection of the center of mass to the center of the
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Fig. 11. Examples of CAD models processed using our proposed technique. From left to right: Pareto-optimal points in design space (illustrated with
multi-dimensional scaling via principal component analysis for models with more than three design parameters); Pareto-optimal points in performance space;
the resulting embedding and illustrations of geometric results for some sampled points. Across all figures, the different colors correspond to different regions
resulting from local expansion in design space.

base), mass, and average distance between the lamp beams and a

predetermined focal point that should be illuminated. As shown in

the figure, our method returns an approximation of the Pareto front

with many disconnected regions in the design space. This behavior

arises due to the presence of many points in the design space that

are mapped to the same regions on the Pareto front (i.e., there are

many points in the Pareto front which can be locally approximated

by manifolds of higher dimension than d − 1). An example of this is

shown in Figure 13. This example highlights the utility of creating

a sparse representation of the Pareto front with local manifolds.

Since multiple points map to the same point on the Pareto front,

a discrete approach would result in an approximation containing

many disparate points across the design space. This discontinuous

representation, however, provides little in the way of performance

trade-off insights. Our method, on the other hand, creates locally

smooth regions around areas of similar geometry. This configuration

in turn allows designers to directly observe which parameters have

a significant effect on local performance and which ones do not, a

particularly useful feature in higher-dimensional cases.

8 CONCLUSION
Real-world design problems can rarely be squeezed into one dimen-

sion. Instead, the process of engineering a physical object requires

navigating a complex and potentially even disconnected space of

candidate configurations. The algorithm and accompanying interac-

tive tool presented in this paper represent a significant effort toward

the larger goal of efficiently estimating and navigating the space

of relevant designs for a given problem. Our technique efficiently

reveals this space in a wide variety of scenarios, from benchmarks in

multi-objective optimization to parameterized CAD models paired

with expensive physical simulation tools. Its versatility indicates
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Fig. 12. Example of two variations of the brake hub that have similar perfor-
mance metrics but very different design parameters. Our system can expose
these relationships providing intuition to designers about the structural
nature of the model. The metrics are shown under a normalization for easy
comparison—the Pareto front is rescaled to lie between zero and one.

Fig. 13. Example of two different lamps (front and side view) that have the
same performance across all metrics. Due to the large dimensionality of the
design space, these two configurations have the same stability, mass, and
distance to the focal point.

broad applicability across use cases in computational fabrication

and beyond.

While our algorithm as-is can be plugged into many existing en-

gineering pipelines, we also anticipate several avenues of research

that can extend the basic model proposed here. One important con-

sideration comes from the human-computer interaction. Now that

we can efficiently uncover and parameterize the Pareto front, what

is the best way to display it to an engineer whomust digest the space

of candidate designs? Such a study can use our tool as a starting

point, adjusting e.g. the embedding of the performance buffer to

best reflect intuitive notions of proximity in performance space. On

the opposite side of the spectrum between human interaction and

automation, we also anticipate that our differentiable representation

of the Pareto front can be incorporated into “hyperparameter” se-

lection techniques that use a secondary function to choose between

different points on the Pareto front.

Our study also suggests several intriguing mathematical and al-

gorithmic challenges. While our benchmark study indicates that

our algorithm yields a smooth and complete picture of the Pareto

front—at least in realistic scenarios where the front is representable

computationally—additional theoretical analysis could reveal con-

vergence rates and/or the likelihood that our strategy will reveal

the entire Pareto front. Of course, such theoretical analysis will

probably require stronger assumptions on the performance metrics

than are needed in practice, e.g. convexity or Lipschitz bounds, to

rule out pathological cases; the challenge will be to select a theo-

retical model that is reflective of the scenarios we observe in our

examples from CAD and engineering design. Further analysis could

also extend the first-order approximation to handle cases in which

the derivatives of the active constraints at a given point are them-

selves linearly dependent. Algorithmically, a clear next-step will

be to extend our methodology to the regime where parameters are

discrete or performance measures are not twice differentiable.

An additional challenge for the future spanning both technical

and human-oriented aspects is to cope with higher dimensionalities

for performance space. Currently our technique is designed for the

d = 2 andd = 3 cases, for which the Pareto front is readily embedded

in a display tool. Considering larger values of d will require several

technical developments. For the sampling algorithm, the “curse of

dimensionality” implies that sampling may take more iterations to

converge; we anticipate that our manifold-based strategy will serve

as a key component reducing computational burden in this regime

by exploiting local structure to discover larger pieces of the front

at a time. After uncovering the higher-dimensional Pareto front,

we will also need to design a means of displaying the result in a

fashion similar to Figure 11. While MDS embedding of the Pareto

front may suffice, a more careful parameterization that preserves

relevant relationships between the performance metrics may be

desirable.

Even in the absence of these improvements, we anticipate in-

corporation of our exploration algorithm and visualization tool

into software for CAD and 3D modeling. By helping engineers and

designers understand the possible ways to trade off between perfor-

mance metrics, we hope to alleviate the dependence on unintuitive

and often brittle parameters currently permeating design software.

A PROOF OF PROPOSITION 5.1
Since x(t) ∈ P for all t ∈ (−ε, ε), each point x(t) must satisfy the

KKT conditions (2). Hence, we can assume the existence of time-

varying dual variables α(t) : (−ε, ε) → Rd and β(t) : (−ε, ε) → RK .
Generically these functions are differentiable in t .
For a given critical point x∗ = x(0), without loss of generality

permute the constraints so that the first K ′ inequality constraints

are active, i.e. дk (x∗) = 0 for all k ≤ K ′, and that the remaining

constraints are inactive, i.e. дk (x∗) < 0 for all k > K ′.
Applying the complementary slackness condition in (2), we must

have βk (0) = 0 for all inactive constraints дk (x∗). By continuity, if a

constraint is inactive at t = 0 it must remain inactive in a nonempty

open interval surrounding t = 0. After possibly restricting ε , we can
assume βk (t) ≡ 0 for all k > K ′ and t ∈ (−ε, ε).
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Collecting our observations so far, we rewrite the KKT condi-

tions (2) as follows:
αi (t) ≥ 0 ∀i ∈ {1, . . . ,d}, t ∈ (−ε, ε)
βj (t) ≥ 0 ∀j ∈ {1, . . . ,K ′}, t ∈ (−ε, ε)
βjдj (x(t)) = 0 ∀j ∈ {1, . . . ,k}, t ∈ (−ε, ε)∑d
i=1 αi (t) = 1, t ∈ (−ε, ε)∑d
i=1 αi (t)∇fi (x(t)) +

∑K ′
j=1 βj (t)∇дj (x(t)) = 0 ∀t ∈ (−ε, ε)


(9)

Note this form effectively ignores the inactive constraints since they

do not figure into the problem near t = 0.

Our next task is to differentiate the final condition in (9) with

respect to t at t = 0. Define:

h(t) :=
d∑
i=1

αi (t)∇fi (x(t)) +
K ′∑
j=1

βj (t)∇дj (x(t))

Then,

h′(t) = DF⊤(x(t))α ′(t) +
( d∑
i=1

αi (t)Hfi (x(t))
)
x′(t)

+ DG⊤(x(t))β ′(t) +
( K ′∑
k=1

βk (t)Hдk (x(t))
)
x′(t)

Here, Du indicates the Jacobian and Hu indicates the Hessian of a

function u(x).
Evaluating at t = 0 and recalling x(0) = x∗ shows

h′(0) = DF⊤(x∗)α ′(0) +
( d∑
i=1

αi (0)Hfi (x
∗)

)
x′(0)

+ DG⊤K ′(x
∗)β ′(0) +

( K ′∑
k=1

βk (0)Hдk (x∗)
)
x′(0)

WeuseDGK ′ to denote the part of the Jacobian ofG corresponding to

active constraints. Defining H :=
∑
αi (0)Hfi (x∗) +

∑
βk (0)Hдk (x∗)

allows us to simplify our expression to

h′(0) = DF⊤(x∗)α ′(0) + DG⊤K ′(x
∗)β ′(0) + Hx′(0). (10)

From the KKT conditions, we know h(t) ≡ 0—and hence h′(t) ≡
0—for all t ∈ (−ε, ε). Rearranging slightly shows

Hx′(0) ∈ Im(DF⊤(x∗)) ⊕ Im(DG⊤K ′(x
∗)). (11)

We obtain an additional property of x′(0) by revisiting the comple-

mentary slackness condition in (9), which shows βk (t)дk (x(t)) ≡ 0

for t ∈ (−ε, ε) and k ∈ {1, . . . ,K ′}. Again differentiating both sides

with respect to t shows

0 = β ′k (t)дk (x(t)) + βk (t)∇дk (x(t))
⊤x′(t).

Recall дk (x∗) = 0 since constraint k is active; we furthermore can

assume βk (0) , 0 since the constraint is active. Hence the first term

vanishes and at t = 0 we are left with

∇дk (x∗)⊤x′(0) = 0 ∀k ∈ {1, . . . ,K ′}, (12)

Combining different k’s shows

DGK ′(x∗)x′(0) = 0,

as desired.
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