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Figure 1: Our method takes an input mesh of primitives (left) and deforms it to a small number of polygons (center). The
reduced mesh can be fabricated using a laser cutter and textured to easily create large physical models (right).

Abstract
We present a method for converting computer 3D models into physical equivalents. More specifically, we address
the problem of approximating a 3D textured mesh using a small number of planar polygonal primitives that form
a closed surface. This simplified representation allows us to easily manufacture individual components using com-
puter controlled cutters (e.g., laser cutters or CNC machines). These polygonal pieces can be assembled into the
final 3D model using internal planar connectors that are manufactured simultaneously. Our shape approximation
algorithm iteratively assigns mesh faces to planar segments and slowly deforms these faces towards correspond-
ing segments. This approach ensures that the output for a given closed mesh is still a closed mesh and avoids
introducing self-intersections. After this step we also compute the shape of polygonal connectors that internally
hold the whole mesh surface. Both the polygonal surface elements and connectors can be manufactured in a single
cutting pass. We validate the use of our method by computing and manufacturing a variety of textured polyhedral
models.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Computer graphics has greatly contributed to developing
tools for creating 3D models. Currently, a wealth of 3D mod-
els exists; there are many 3D modeling tools both for profes-
sionals and casual users. However, converting a 3D model to
a physical equivalent is still a difficult and expensive process.
There is a strong need to develop a suite of different methods
to make this process inexpensive, fast, high-fidelity, and thus
available to a wide population.

One of the most promising solutions for converting 3D
textured models to physical equivalents is 3D printing. Un-
fortunately, there are still many disadvantages to using this
method. First, 3D printing has a high material cost. Printing
a human-sized figure would be quite expensive and would
take days. Additionally, the size of printed objects is limited
by the printing volume of a given 3D printer. Furthermore,
printing materials are usually restricted to plastics and only
one printer (3D Systems’ ZPrinter) supports full-color print-
ing. Finally, manufacturing light empty shells is not possible
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using current 3D printing technologies, since a closed sur-
face would be filled with a support material. Overall, we are
not aware of a method that allows converting 3D models to
physical replicas that is inexpensive, fast, allows for large
objects, supports shells, and allows different types of mate-
rials.

In this paper we present a process for converting a tex-
tured 3D model to a physical copy. We represent a model
using planar pieces and connectors, all of which can be man-
ufactured using computer-controlled 2D cutting tools. Con-
structing models using this method is inexpensive and fast.
Furthermore, we can manufacture large and multi-material
objects. Our objects are inherently light since they are hol-
low.

In order to minimize the assembly time, our goal is to ap-
proximate the object with a small number of polygonal prim-
itives. Given a target number of primitives and an optional
user-specified saliency map over the input mesh, our method
iteratively clusters mesh faces, estimates planes for each
cluster, and slowly deforms the faces toward each plane. The
method minimizes mesh distortion, avoids self-intersections,
and retains mesh connectivity. The saliency map allows the
user to specify which mesh regions are more important and
should be assigned more polygons. Since both the origi-
nal and the deformed mesh share the same parameteriza-
tion, supporting textures is straightforward. Textures can be
directly printed onto the planar polygons using a flatbed
printer, or they can be printed separately and attached after-
wards. One of the results of our system is shown in Figure 1.

Once the object is decomposed into planar textured poly-
gons, our process automatically designs planar connectors
that internally join neighboring surface polygons. The shape
of each connector is adjusted to the angle between the two
planes. In cases connectors cannot be placed due to small
space or small angle between the planes, we connect the
neighboring polygons using a saw-tooth pattern embedded
in each polygon.

We believe that there is a wide range of applications for
the proposed system. For example, fabricated models can be
employed for more effective advertising in contrast to sim-
pler planar cutouts. Our system can also be used to make
wooden toys, 3D puzzles, and inexpensive props for theatri-
cal productions. Since the models can be made from rugged
materials (e.g., wood, acrylic), it is possible to use them in
an outdoor setting as well.

2. Related Work

We review prior work in several relevant areas. First, our
work is related to mesh simplification techniques [CMO97,
GH97,Hop99,GGH02]. These methods typically work with
triangle or quad meshes and simplify models to thousands or
hundreds of triangles. However, mesh simplification meth-
ods do not work well in the case of extreme model simpli-

fication (e.g., when using tens of triangles/quads) because
they usually use a greedy approach and they typically only
work with triangles and quads. However, our optimization
algorithm uses arbitrary polygons and is not restricted to tri-
angles or quads. We show that reasonably complex models
can be well represented using only tens of primitives, if ar-
bitrary polygons are allowed. In this respect, our work is
more related to variational shape approximation [CSAD04]
that approximates a shape with a set of planar polygons.
Their method repeatedly clusters the original faces onto a
set of planar proxies and then stitches these planar prox-
ies. In contrast, our method gradually deforms the original
mesh such that the mesh is always closed. Most simplifica-
tion algorithms do not check for self-intersections. Cohen et
al. [CMO97] show how to avoid self-intersection by com-
puting a 3D Voronoi diagram of triangles. They also check
that each newly added triangle does not intersect the current
approximation mesh. Our algorithm checks self-intersection
at each deformation step in a much simpler fashion, as ex-
plained in 3.1.2. Our work is also related to billboard clouds
by Decoret et al. [DDSD03], which uses multiple discon-
nected planes to represent a model. However, that method is
focused on efficient rendering rather than on making mod-
els that can be manufactured. The work of Holroyd and col-
leagues [HBLM11] also decomposes a model into a set of
planes. In their setting the planes are parallel to each other,
allowing the model to be easily manufactured (e.g., by print-
ing on layers of glass).

Another set of methods related to our approach are com-
putational methods for converting 3D models to papercraft
figures. Demaine and O’Rourke [DO07] give an overview
of geometric algorithms in the area of computational origami
and folding. Tachi [Tac09] presents a practical method that
computes a single-sheet folding pattern for a given 3D poly-
hedral surface. Mitani and Suzuki [MS04] approximate a
model by a set of continuous triangle strips and show a cor-
responding physical model made of paper strips. Similarly,
Shatz et al. [STL06] and Massarwi et al. [MGE06] present
algorithms for segmenting a given mesh into developable
parts that can be cut and glued together. These techniques
typically require special handling of the boundaries to make
sure that the model remains closed. The models can be man-
ufactured only from materials that can bend since the strips
are not necessarily planar. We limit our primitives to pla-
nar polygons, which makes the model approximation pro-
cess more difficult. However, this allows us to use a wider
range of materials, and the manufactured models can be
much larger.

The methods for computationally generating paper pop-
ups given a 3D model have also been investigated in the
computer graphics community. Glassner [Gla02] reviews the
methods for computational design of pop-ups and presents a
virtual authoring environment. Li et al. [LSH∗10] develop
a completely automatic algorithm that outputs a parallel pa-
per architecture that approximates a desired 3D model. This
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Figure 2: Overview of the algorithm. Our system first finds some initial cluster seeds, then alternatively iterates between seg-
mentation and flattening (described in 3.1. The result is a flattened model that is further processed into fabricable components.

work has been extended to more general v-style pop-ups
[LJGH11].

The recent approaches that approximate a model using a
collection of interlocking planar shapes are also related to
our work. SketchChair [SLMI11] is a system that allows
designing and fabricating chairs using a 2D sketch-based
interface. McCrae et al. [MSM11] introduce an algorithm
that greedily selects planes that form a shape-proxy to ap-
proximate a given 3D model. The approach of Hildebrand
et al. [HBA12] uses a binary space partition tree as a rep-
resentation for a mutually intersecting planar cut-out. They
present an algorithm to generate these cut-outs that guaran-
tees assembly. In contrast, our system attempts to approx-
imate directly the shape and appearance of the input 3D
model.

3. Computing Multiplanar Models

Our process for converting a 3D textured model to 2D com-
ponents that can be manufactured using computer-controlled
cutting machines has two main steps. In the first step we
present an algorithm that converts a 3D model to a mesh
with a small number of polygons (Section 3.1). In the second
step, we convert this polygonal mesh to planar components
and their corresponding connectors, taking into account con-
straints imposed by the material (Section 3.2). The overall
process is illustrated in Figure 2.

3.1. Deforming 3D Models to Polygonal Meshes

It is challenging to simplify a mesh into a relatively small set
of polygons while ensuring that the simplified mesh remains
closed and free of self-intersections. We describe a simple
algorithm that accomplishes this task. We pose the problem
as an iterative, mixed discrete-continuous optimization prob-
lem. The discrete optimization step involves assigning each
mesh triangle to one of k discrete planes. We cast this prob-
lem as a Markov-Random-Field and solve it efficiently using
a multi-label minimum-cut algorithm [YB01,VK04,YB04].
Based on the computed assignment of faces to planes, we
recompute the location of each plane. Then, in the continu-
ous step, we deform each face towards its assigned plane by
solving a linear system of equations. After this step, we also
recompute the k planes.

In the first iteration of the mesh segmentation algo-
rithm, we initialize the planes using a k-means++ algorithm
[AV07]. We repeat the two different optimization steps un-
til the system converges. Typically, a small number of itera-
tions is sufficient (approximately 50). It is important to note
that our algorithm only moves vertices. The original and de-
formed mesh have exactly the same number of triangles and
connectivity.

3.1.1. Mesh Segmentation

In the discrete step, our task is to segment the mesh assign-
ing one of the k planes to each triangle. We define labels and
associate each label f with a plane. This plane is described
using the equation x · n f − d f = 0 for all x on the plane,
where n f is the plane normal and d f is a constant for the
plane. Given plane equations for all labels, we would like to
compute an assignment of triangles to labels (planes) such
that (1) each triangle lies close to the corresponding plane
and (2) neighboring triangles share the same labels. In par-
ticular, given a graph, this algorithm seeks a labeling that
achieves a local minimum of the cost function defined as
follows:

E = ∑
p

Dp( fp)+wV ∑
p,q

Vp,q( fp, fq) (1)

where Dp( fp) is a unary cost function for labeling node p
with fp (often referred as the data term), Vp,q is a binary cost
function defined on each edge of the graph (often referred as
the smoothness term), and wV is a weight that specifies the
relative importance of these two costs. In order to apply a
multi-label min-cut algorithm to our problem, we construct
a graph where each node of the graph corresponds to a tri-
angle in the 3D model. We then treat two triangles as be-
ing adjacent only when they share an edge in the 3D mesh.
Multi-label min-cut algorithm can optimize this type of cost
function among many other algorithms.

In our case, the unary cost (the data term) is computed as
the distance between the triangle and the plane correspond-
ing to the label f . For each triangle p, we compute its center
cp and normal np. The unary cost Dp( f ) is a weighted sum
of the difference between the normals of triangle p and the
plane fp and the distance from the centroid of the triangle p
to the plane fp. The corresponding expression is defined as

c© 2013 The Author(s)
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follows:

Dp( f ) = Ap(|n f −np|L1 +wn|d f − cp ·n f |), (2)

where wn is a user-defined weight, Ap is the area of the tri-
angle. In practice, we set wn to 10. The binary edge cost
function (the smoothness term) is defined as:

Vp,q( fq, fq) =

{
0, fp = fq
Apq(4−|np−nq|L1), fp 6= fq.

(3)

Apq is the average area of triangles p and q. Splitting two
neighboring triangles into different clusters incurs a cost that
decreases linearly with respect to the difference in normals.
User-specified Mesh Saliency: In our system, we would
like to employ as few polygons as necessary to represent a
3D model in order to minimize the assembly time. There-
fore, it is highly desirable to approximate the original mesh
better in visually salient areas. However, automatically de-
tecting these areas is still an unsolved problem. We allow a
user to manually specify the salient areas of the mesh (e.g.,
by painting over the mesh texture map). If the user specifies
a weight map wt for each triangle, it is added to the smooth-
ness term:

Vp,q( fq, fq) =

{
0, fp = fq
Apq(4−|np−nq|L1 +wt), fp 6= fq.

(4)

The value of the weight wt needs to be low in salient areas
and high in non-salient areas.

Updating Plane Equations: After computing the label for
each triangle, we update the plane equation for each label
as well. The normal n f for plane/label f is computed as a
weighted average of normals for all triangles assigned with
label f . The weight corresponds to the area of each triangle.
Similarly, we compute the weighed average for all triangle
centers assigned to label f . We use it to determine a new
value for the constant d f .

3.1.2. Mesh Deformation

In the continuous step, our goal is to deform the mesh, ad-
justing the position of each vertex. Unlike previous work on
mesh morphing [LDSS99, GSL∗99, SP04], the target mesh
is unknown. Our main focus is to solve for the new posi-
tion of each vertex v according to four objectives. First, the
deformed mesh should be similar to the original mesh. Sec-
ond, each cluster should become more planar. Third, we fa-
vor translation and try to preserve the orientation and scale
of each triangle. Lastly and optionally, the mesh can be
smoothed. We create a linear system using these criteria sim-
ilarly to deformation gradients [SP04] and solve the system
for new vertex positions. We used a standard implementation
of conjugate gradient descent as it is sufficiently fast.

After solving for the new positions, we move each vertex
to its new position sequentially. When we move a vertex to
its new position, we detect faces that self-intersect using the
method by Bridson et al. [BFA02]. If the new vertex position

introduces intersections, we reverse its position. Next, we
provide the implementation details for each objective:

1. Mesh Similarity:
For each vertex v and its original position v0, we set the
objective to be:

v = v0. (5)

We set the weight of this objective the same for all ver-
tices.

2. Cluster Flattening:
The normal of each cluster n is computed as an area-
weighted average of triangle normals. For each triangle
(v1,v2,v3) in the cluster, we add the objective that two
of its edges should lie in a plane perpendicular to the av-
erage normal, that is

(v2−v1) ·n = 0,(v3−v1) ·n = 0. (6)

We multiply the equations corresponding to this objective
by the weight wp. The value of this weight increases with
each iteration of the algorithm. Intuitively, at the begin-
ning we would like to make small changes to the mesh
to facilitate changes in label assignments. Later, these as-
signments become more fixed and we would like to focus
on planarity objective.

3. Transformation Objective:
The algorithm avoids texture coordinate distortion by us-
ing constraints on scaling and rotation transformations of
triangles. In order to represent non-translational transfor-
mation of a triangle (v′1,v

′
2,v
′
3), we follow the practice of

[SP04] and use an auxiliary vertex v′4 defined as:

v′4 = v′1 +
n′

|n′|1/2
, (7)

where

n′ = (v′2−v′1)× (v′3−v′1).

Here v′i is a known vertex position from the previous
iteration. Let T be the transformation on the triangle
(v′1,v

′
2,v
′
3), vi = T(v′i), and

V =

v2−v1
v3−v1
v4−v1

 ,V′ =

v′2−v′1
v′3−v′1
v′4−v′1

 ,

Then the non-translational component T̂of the transfor-
mation satisfies T̂V′ = V. Assuming no triangles are de-
generate, we can invert V′ to get T̂ = VV′−1

. Therefore,
the transformation can be written as a linear combina-
tion of new vertex positions. A linear constraint for the
transformation therefore would be translated into a linear
constraint for new vertex positions. We add the objective:

T̂ = I, (8)

which states that the non-translational component of the
transformation should be similar to the identity matrix.

c© 2013 The Author(s)
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4. Smoothness For each vertex v, the smoothness of the
mesh can be enforced by moving the vertex closer to the
average position of its neighbors N(v), that is:

v− 1
|N(v)| ∑

u∈N(v)
u = 0. (9)

3.2. Computing Fabricable Components

The algorithm presented in the previous section deforms the
original mesh such that the resulting mesh has at most k
polygonal clusters. Next, our goal is to convert this inter-
mediate model to a set of 2D components that can be man-
ufactured and assembled into a physical model. In order to
accomplish this, we have to perform the following tasks: (1)
extract 2D polygons from triangle clusters; (2) truncate poly-
gon boundaries based on material thickness; (3) create tex-
tures for the physical model; and (4) create connectors that
join neighboring polygonal components. We will describe
all these tasks in sequence.

3.2.1. Converting Triangle Clusters to Polygons

After the deformation step, the intermediate result is still tri-
angular and each face is labeled. For each label, we compute
a polygon that is a union of all the triangles with this la-
bel. We do this by tracing the boundaries of each polygon.
We observe that an edge in a triangle is also a polygon edge
only if it is adjacent to two triangles with different labels.
We find all these edges and join them to form a polygon.
We then remove all vertices that are not at the intersection
of three or more clusters. Since the deformation step flattens
each cluster up to very small numerical error, this algorithm
is sufficient and robust to generate all polygon edges even in
the case where the input model contains holes.

3.2.2. Truncating Polygon Boundaries

So far we have assumed that polygons are infinitesimally
thin. However, physical materials have a nonzero thickness
and therefore, we need to truncate the boundaries of some
polygons in order to fit adjacent polygons. Figure 3 shows
two cases where truncating is necessary. The first case arises
when two planes meet at a convex obtuse angle θ. Then one
plane has to be truncated by t · sinθ, where t is the mate-
rial thickness. In the second case where two planes meet at
a convex acute angle, both planes have to be truncated, one
by t · cotθ and the second by t · cot θ

2 . Note that this choice
preserves the outline of the model. The same truncation can
be applied whether two planes share a vertex or an edge. A
shared vertex can be treated as an edge with zero length in
the direction perpendicular to both plane normals.

3.2.3. Computing Model Textures

Unlike previous approaches (e.g., [CSAD04]) that need to
remesh the model, our algorithm preserves all triangle faces
and texture coordinates during mesh processing. Moreover,

(a)
(b)

Figure 3: Side view of adjoined planes. Left: two planes
meet at an obtuse angle. One of the plane needs t · sinθ of
material to be removed along the boundary, where t is the
thickness. Right: two planes meet at an acute angle. Both
planes need to be truncated. One needs to cut t · cotθ and
the other needs to cut t · cot θ

2 .

our deformation process attempts to minimize rotation and
scaling of the deformed triangles. Therefore, we can gen-
erate a good-quality texture for each polygon by reusing
the original texture coordinates. There are many algorithms
for preserving texture coordinates during mesh simplifica-
tion [COM98, LSS∗98, SSGH01, KLS03]. They offer great
inspirations for a more sophisticated algorithm to project
texture onto a plane with low distortion.

3.2.4. Connectors

There are several possible methods for connecting two pla-
nar pieces. The choice of the method depends on the type
of material, its size, strength, connection angle, and aes-
thetic requirements. We describe two methods that can be
employed within the same 2D cutting process and material
used to fabricate the polygonal pieces. The first design uses
an additional connector element (shown in Figure 4) that at-
taches to two planar polygons that share an edge. We gener-
ate a connector template that is parameterized by the angle
between the polygons and the material thickness. In order to
place a connector, we first choose a few positions along the
edge between two adjacent planes. We then ensure that the
connector does not collide with other connectors and other
planes. If it does not, then we carve out rectangular slots in
both polygons and we add the corresponding connector to
the model. We oversize all connectors by a small amount to
create an interference fit that holds them in place in the poly-
gons. However, this type of connector cannot be used when
the angle between the planes is less than 90◦ – the two pieces
cannot be inserted into the slots. In this case, we use a dif-
ferent connection method – teeth are carved on the edges be-
tween two polygonal pieces (shown in Figure 5). These teeth
are also oversized to create friction that holds two polygonal
pieces together. We also use teeth when a piece is too small
to fit a connector.

c© 2013 The Author(s)
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(a) (b)

(c) (d)

Figure 4: Types of connectors based on the angle between
two planes. Figure (a), (b), and (c) show the connector for
acute angles, obtuse angles and concave intersections. Fig-
ure (d) shows a concave connector with an acute angle that
cannot be assembled.

4. Results

We have tested our pipeline on a number of different mod-
els. In this section, we analyze performance of our system
with respect to different parameters. We compare our sys-
tem to two previous systems, the Variational Shape Approx-
imation [CSAD04] and the Quadratic Error Metric [GH97].
Next, we discuss the physical models we have fabricated.
Finally, we discuss limitations of our current system.

4.1. Parameter Settings

The algorithm for computing polygonal deformation takes
as input the number of desired polygons k. We experiment
with k ranging from 30 to 90. While it is possible to use val-
ues larger than 100, it would take a long time to assemble the
resulting models. On the other hand, it is difficult to repre-
sent models with fewer than 30 planes. We analyze the per-
formance of the algorithm as a function of desired polygons
k. We show the results for two different models in Figure 7
(top). Our algorithm iterates between the mesh segmentation
step and mesh deformation step. We have used 50 iterations
for all our experiments. The mesh segmentation has one pa-
rameter, wV , which controls how smooth the segmentation
is. In our experiments we have set its value to around 0.05. In
the mesh deformation step, we can set relative importance of
four different constraints: the mesh similarity constraint, the

Figure 5: Toothed connector. In cases the connectors in Fig-
ure 4 cannot be used, we generate teeth between two pieces.

hole

self-intersection

fin

Figure 6: Examples of a hole, a fin and a self-intersection
produced by VSA.

cluster flattening constraint, the transformation constraint,
and the smoothness constraint. We only set the importance
of the cluster flattening constraint wp. We increase this pa-
rameter with each iteration of the algorithm, starting with 1
and ending at 2000. We never treat planarity as a hard con-
straint. However, after the final iterations, each cluster is flat
up to negligible numerical errors as shown in Figure 10. We
never found this error to be a problem during assembly.

4.2. Comparison to Previous Work

We compared our algorithm against the Quadratic Er-
ror Metric [GH97] and the Variational Shape Approxima-
tion [CSAD04] using Hausdorff distance [CMS98] as an er-
ror metric. Our method produces better models both visually
and numerically. VSA does not guarantee that each polygon
is planar because enforcing flatness is absent from the algo-
rithm. Therefore, VSA has a slight advantage, as it can keep
vertices closer to the original surface. We refer our readers to
Cutler et al. [CW07] for difficulties in enforcing planarity of
polygons. Table 1 shows errors for the 6 models we used in
comparison. Our algorithm performed the best in most cases.

Since none of the algorithms optimize for Hausdorff dis-
tance, increasing the number of polygons does not always
decrease the Hausdorff distance. When the number of poly-
gons increases, the visual quality of a model is much better.
However, Hausdorff distance only measures the distance of
the farthest point, which sometimes does not affect the vi-
sual quality much. Because of the limitation of Hausdorff
distance, we also compare the visual results of two mod-
els in Figure 7. Note that we can preserve higher details
in the models compared previous works even without user-
specified salient areas.

It is worth noting that QEM and VSA do not always pro-
duce manifolds. QEM produced fins for some models dur-
ing our experiments (see Figure 7). Figure 6 shows exam-
ples of VSA producing fins, holes and self-intersections. In
some cases, VSA produced a fractured triangle soup and
then stopped. We were unable to obtain a mesh in those cases
and left blanks in Table 1.

c© 2013 The Author(s)
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Original Model 30 Polygons 50 Polygons 70 Polygons 90 Polygons
O

ur
s

V
SA

Q
E

M

Figure 7: Comparison of outputs with different number of polygons and methods. The top row shows the results from our
method. The middle row compares the results from VSA. The bottom row shows the results from QEM.
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Model Method 30 50 70 90
Bird Ours 4.84 3.26 1.74 1.94

VSA 5.16 3.93 1.94 1.82
QEM 6.97 6.84 3.06 3.06

Bunny Ours 4.66 4.36 2.84 1.96
VSA 5.90 4.76 3.61 3.37
QEM 8.25 6.73 5.19 5.19

Gnome Ours 6.70 4.68 2.88 2.71
VSA 7.02 5.84 4.39 4.94
QEM 10.23 7.38 5.44 5.42

Human Ours 2.31 2.38 2.29 2.26
VSA 7.22 4.90 3.89 3.16
QEM 6.87 7.24 6.52 4.03

Mask Ours 2.80 1.86 1.72 1.08
VSA 2.91 2.10 1.64 1.33
QEM 5.45 3.90 3.17 2.22

Rhino Ours 7.20 8.05 4.81 3.61
VSA N/A N/A N/A 4.35
QEM 9.59 8.56 7.84 7.84

Table 1: Comparison of different methods with different
number of planar polygons. Our results are computed with-
out user guidance for a fair comparison. In case of QEM,
all polygons are triangles. The results are Hausdorff dis-
tances measured as a percentage of a diagonal of the bound-
ing boxe for each model. In some cases, we were unable to
obtain a result with VSA using code provided by the original
authors.

4.3. Running Times

The running times are quite short even though we are just
using standard implementations of multi-label min-cut and
conjugate gradient. We typically run the algorithm for mod-
els with 10K triangles. In this case, each iteration of the
algorithm takes a few seconds with running times roughly
equal between the segmentation and deformation steps. This
results in running times of a few minutes for each model.
Using highly-optimized implementations can further speed
up our algorithm. The running times for different models are
shown in Figure 10.

4.4. User-specified Saliency

The saliency map proves to be a valuable tool. It adds spa-
tial adaption to the smoothness term in the mesh segmen-
tation step. We show examples of using manually painted
saliency maps on two different models in Figure 8. We com-
pare the result of mesh deformation with and without the
saliency map term when using the same number of polygons.
Observe that when we do not specify the saliency map, the
head of the bird and the face of the person are overly sim-
plified. However, we preserve more features in these areas
when specifying the appropriate saliency map.

While existing saliency detection algorithms [LVJ05],

(a) (b)

(c) (d)

Figure 8: Comparison of clustering with and without user
painted saliency given the same number of clusters. Left:
Clustering results without user guidance. Right: User
guided clustering. The user painted higher saliency around
the head and neck area and lower saliency around the legs
and feet. Our algorithm accordingly assigned more planes
to the head and neck while sacrificing details around the feet
and legs.

[PPT∗11] can provide saliency maps for our algorithm, we
find that painting a coarse saliency map is very simple and
offers more control for the user. For example, the human feet
contain as much high frequency variation as a human face.
The user can specify that feet should use fewer polygons de-
spite the amount of detail they contain.

4.5. Manufactured Models

We have manufactured a number of different models us-
ing our system (shown in Figure 10). We have used balsa
wood, basswood, and acrylic as our substrate materials. We
have cut both the models and the connectors using the same
computer-controlled laser cutter (we show the complete set
of parts that are necessary to assemble one model in Fig-
ure 9). We have assembled all parts and connectors by hand,
and then used an inkjet printer to print the corresponding
textures. Next, the textures have been glued to the models.
Alternatively, we can use a flatbed printer to print directly on
the manufactured parts. Depending on the complexity of the
model and the number of polygons, the fabrication process
takes 1-8 hours. Overall, our models look very convincing,
especially with the added textures. Moreover, they are inex-
pensive and relatively easy to make. Our models can be large
(e.g., the length of the Rhino model is more than 75cm). In
comparison, 3D printing similar models could be difficult
and expensive.

c© 2013 The Author(s)
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Figure 9: Manufactured parts and assembled model. Parts
were manufactured using a laser cutter with 1/8 inch thick
basswood material. The cutting time was about 5 minutes,
and the assembling process took roughly an hour and a half.

4.6. Limitations

Our current system has a number of limitations. The input
to the algorithm should be a connected mesh, ideally with
nearly equal-area triangles and without self-intersections.
Since the algorithm tries to preserve these properties, it does
not work well with meshes that do not satisfy these proper-
ties. One promising alternative to our self-intersection han-
dling is [HPSZ11]. While our algorithm works well with
high-genus meshes, supporting high-genus meshes requires
increasing the number of polygons in the output model. The
algorithm also has problems with very thin features. Al-
though it can simplify the meshes correctly, the thickness
of the material makes it difficult to manufacture the final
model. One solution to this problem is to directly incorpo-
rate the thickness of the material into the mesh deformation
algorithm.

5. Conclusion and Future Work

Our method makes conversion of 3D textured meshes into
physical counterparts inexpensive and practical. It decom-
poses an input mesh into planar polygons and planar con-
nectors that can be easily fabricated using any computer-
controlled 2D cutting machine. Then, the manufactured
polygonal pieces can be easily assembled into final 3D mod-
els using the provided connectors. We believe that our pro-
posed method is a good alternative to 3D printing, especially
when the physical models are large. The resulting models
can also be made from a variety of different materials. The
use of texture improves the realism of the manufactured
models, particularly when the deformed models have a low
number of polygons.

There are several improvements that can be made to the
existing system. Our current models use a low number of
polygons, and assembly is not difficult because the polygons
and connectors are engraved with appropriate IDs (using
the laser cutter). For models with a larger number of primi-
tives it would be necessary to automatically generate assem-
bly instructions (e.g., similarly to the method presented by
Agrawala et al. [APH∗03]). For larger models it might be
also necessary to generate an internal support structure (e.g.,
similar to Hildebrand et al. [HBA12]). The support structure
would allow heavier materials to be used for the polygonal

panels. Furthermore, the exterior polygonal panels could po-
tentially be attached in an arbitrary order. Finally, the current
method has difficulty handling thin features. One possible
solution to solve this problem is to break the assumption that
the resulting model is a closed surface, allowing the use of a
single sheet of material to represent thin features.
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Input Model Flatten Model Fabricated Textured

7,027 vertices/ 14,043 faces 45 clusters (17 min) Basswood 13" tall, 3 Hours Fabrication

896 vertices/ 1,788 faces 30 clusters (1 min) Balsa Wood 6" wide, 1 Hour Fabrication

4,989 vertices/ 9,902 faces 40 clusters (10 min) Basswood 13" long, 3 Hours Fabrication
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Figure 10: Results of our algorithm on different models. These models have different geometric complexity and topology. We
also tested our method on different types of materials and number of polygons.
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