
Procedural Metamaterials: A Unified Procedural Graph for Metamaterial
Design
LIANE MAKATURA∗ and BOHAN WANG∗,MIT, USA
YI-LU CHEN, ISTA, Austria
BOLEI DENG,MIT, USA
CHRIS WOJTAN and BERND BICKEL, ISTA, Austria
WOJCIECH MATUSIK,MIT, USA

Fig. 1. (Top) Structures spanning five major classes of cellular architectures, all of which can be expressed compactly via our procedural graphs (beneath
each structure, nodes colored by operation type). (Bottom) Expanded view of our procedural graph for the Schwarz P structure, with a visualization of the
construction process: our operations transform simple guiding topology into a skeleton that is solidified according to a spatially-varying thickness function.

We introduce a compact, intuitive procedural graph representation for cel-

lular metamaterials, which are small-scale, tileable structures that can be

architected to exhibit many useful material properties. Because the struc-

tures’ “architectures” vary widely – with elements such as beams, thin shells,

and solid bulks – it is difficult to explore them using existing representations.

Generic approaches like voxel grids are versatile, but it is cumbersome to

represent and edit individual structures; architecture-specific approaches

address these issues, but are incompatible with one another. By contrast,

our procedural graph succinctly represents the construction process for any

structure using a simple skeleton annotated with spatially-varying thickness.

∗
Both authors contributed equally to this research.

Authors’ addresses: Liane Makatura, makatura@mit.edu; Bohan Wang, bohanw@mit.

edu, MIT, USA; Yi-Lu Chen, yi-lu.chen@ist.ac.at, ISTA, Austria; Bolei Deng, boleiden@

mit.edu, MIT, USA; Chris Wojtan, chris.wojtan@ist.ac.at; Bernd Bickel, bernd.bickel@

ist.ac.at, ISTA, Austria; Wojciech Matusik, wojciech@csail.mit.edu, MIT, USA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

XXXX-XXXX/2023/6-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

To express the highly-constrained triply periodic minimal surfaces (TPMS)

in this manner, we present the first fully-automated version of the conjugate

surface construction method, which allows novices to create complex TPMS

from intuitive input. We demonstrate our representation’s expressiveness,

accuracy, and compactness by constructing a wide range of established

structures and hundreds of novel structures with diverse architectures and

material properties. We also conduct a user study to verify our representa-

tion’s ease-of-use and ability to expand engineers’ capacity for exploration.

CCS Concepts: • Computing methodologies→Modeling methodolo-
gies; Shape modeling; • Applied computing→ Computer-aided design.

Additional Key Words and Phrases: graph representation, cellular metama-

terials, microstructures, shellular, triply periodic minimal surfaces (TPMS),

truss structures, hybridmetamaterials, conjugate surface constructionmethod

ACM Reference Format:
Liane Makatura, Bohan Wang, Yi-Lu Chen, Bolei Deng, Chris Wojtan, Bernd

Bickel, and Wojciech Matusik. 2023. Procedural Metamaterials: A Unified

Procedural Graph for Metamaterial Design. 1, 1 (June 2023), 18 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Metamaterials are structures of long-standing interest, as they in-

duce material properties that differ from those of their constituent

base material(s). Metamaterials often exhibit behaviors that are not

, Vol. 1, No. 1, Article . Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0003-4804-2173
HTTPS://ORCID.ORG/0000-0003-1439-1455
HTTPS://ORCID.ORG/0009-0005-0723-0655
HTTPS://ORCID.ORG/0000-0003-2589-2837
HTTPS://ORCID.ORG/0000-0001-6646-5546
HTTPS://ORCID.ORG/0000-0001-6511-9385
HTTPS://ORCID.ORG/0000-0003-0212-5643
https://orcid.org/0000-0003-4804-2173
https://orcid.org/0000-0003-1439-1455
https://orcid.org/0009-0005-0723-0655
https://orcid.org/0000-0003-2589-2837
https://orcid.org/0000-0001-6646-5546
https://orcid.org/0000-0001-6511-9385
https://orcid.org/0000-0003-0212-5643
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Makatura and Wang, et al.

found in nature, such as tuneable compliant, chiral, auxetic and non-

reciprocal behaviors [Jenett et al. 2020; Ou et al. 2018; Panetta et al.

2015] and impressive strength-to-weight ratios [Qin et al. 2017].

The behavior of a given metamaterial is primarily governed by its

cellular architecture, which is the regular or random spatial arrange-

ment of solid regions and voids used to fill a designated volume

[Schaedler and Carter 2016]. The set of possible cellular architec-

tures is uncountably large, even when we restrict our attention to

e.g., the space of regular cellular solids that fill a unit cube and tile

periodically in R3
, as shown in Figure 1. Figure 1 also displays the

many architectural elements that occur within our subspace, such as

straight/curved beams, thin shells, and solid bulks. This breadth is

powerful, as each architectural class offers a unique set of strengths

[Bertoldi et al. 2017; Gibson et al. 2010; Surjadi et al. 2019].

However, these distinct classes complicate metamaterial design,

because no existing representation is well-suited for all structures.

Generic representations like voxel grids can express any structure,

but the specification is cumbersome and difficult to edit, since even

simple changes (e.g., thickening a beam) trigger many independent

voxel updates. Class-specific representations are often more practi-

cal, as each structure’s description is compact and editable. However,

the underlying specifications are as varied as the structures them-

selves: trusses and beams are often given by graphs; solid bulks stem

from constructive solid geometry (CSG) operations; and thin-shell

cellular (shellular) structures use surface meshes or implicit func-

tions. These specifications are not immediately compatible with one

another, so it is difficult to explore over more than one class.

In some cases, it is difficult to explore variations even within a

given class, as each structure requires a unique derivation. For ex-

ample, many shellular metamaterials are based on triply periodic
minimal surfaces (TPMS), which are precisely defined as the integral

of an Enneper-Weierstraß function. For ease of use, TPMS are com-

monly approximated by e.g. level sets of an implicit trigonometric

function. However, both function types are structure-specific and

difficult (if not impossible) to derive. This limits the set of structures

accessible to engineers – and thus, available for exploration.

To alleviate these challenges, we propose a procedural graph

representation that streamlines the process of metamaterial design

for a wide range of common classes, including generic TPMS. Our

representation is specific to cellular metamaterial design, which

allows us to capitalize on characteristics like symmetries while

ensuring that our representation is equally suitable for all target

classes. Moreover, our representation is compact, intuitive, and
easily-editable, such that it is amenable to manual or automated

design space exploration. Finally, it is expressive enough to repre-

sent not only known structures, as shown in Figure 1, but also novel
structures containing elements from one or more class(es).

The most critical aspect of our representation is the unified skele-
tal design space, which uses simple elements like lines and surfaces

to capture the wide range of shapes found in metamaterials. Each

skeletal element is constructed from a small set of simple, high-level

specifications comprised of vertices and edges, a bounding volume,

and the type of skeletal element (e.g. line, surface) to be instantiated.

Each element is also annotated with a spatially-varying thickness

function that determines how it should eventually be thickened into

a physically realizable volume (e.g., beam, shell, or solid bulk).

Although this design space naturally accommodates most of our

target classes, the TPMS shellulars present a considerable obstacle.

Our TPMS approach is grounded in mathematical principles, yet

compatible with the design space described above and intuitive

enough to be used by novices. A critical element of our approach is

the conjugate surface construction method (CSCM), which is "one of

the most powerful techniques to construct minimal surfaces with

a proposed shape in mind" [Karcher and Polthier 1996]. However,

existing CSCM algorithms are largely inaccessible, as they require

extensive domain expertise and human intervention. We embed the

CSCM in an optimization loop to realize the first fully-automatic

version of this pipeline, making it accessible to a wider audience.

In summary, our contributions include:

• a practical algorithm for TPMS via our extended CSCM,

• a unified skeletal design space that compactly expresses the

thickness-annotated skeletons for a wide range of metamate-

rials, including the five major classes in Figure 1, and

• an intuitive procedural graph representation that facilitates

the exploration and evaluation of novel structures.

We validate our approach by constructing hundreds of structures

with diverse architectures. We also conduct a user study to verify

our representation’s intuitiveness and ease-of-use. Finally, although

we defer guided search strategies and physical property validation to

future work, we show the potential of our approach by defining sim-

ple, random exploration schemes that automatically generate truss

and shellular structures with a wide range of material properties.

2 RELATED WORK

2.1 Cellular Architectures
The notion of metamaterials is very broad: even within graphics,

HCI, and ML, recent research includes 2D metamaterial sheets that

are embedded in 3D [Konaković et al. 2016; Martínez et al. 2019;

Signer et al. 2021], interactive metamaterial mechanisms [Ion et al.

2016, 2019, 2017], functionally graded structures for e.g. spatially-

varying elasticity [Schumacher et al. 2015], and multi-material com-

posites with engineered properties [Gongora et al. 2021]. Although

our approach may also apply to these domains, we restrict our fo-

cus to static 3D cellular metamaterials whose unit cells are regular

(rather than random), tilable in R3
, and confined to a unit cube.

Trusses and Beams. Trusses and beams are often used for meta-

materials, as they are easy to specify yet widely varied. The space of

truss topologies alone is large enough to demand its own taxonomy

[Zok et al. 2016], even before accounting for continuous parame-

ters like vertex positions or thickness profiles over beams and their

junctions. To explore this space, Jenett et al. [2020] and Frenzel et al.

[2017] hand-designed several curved-beam structures exhibiting

chiral, auxetic, rigid, and compliant behaviors. For diverse Poisson’s

ratio and Young’s modulus values, Panetta et al. [2015] described

1205 truss-based topologies using a tetrahedral decomposition of a

cube and a graph over 15 possible nodes. Bastek et al. [2022] created

262 topologies by deforming and superimposing 7 fundamental lat-

tice units. Chen et al. [2018] used topology optimization to compute

candidate structures, over which they fit graph templates to create

, Vol. 1, No. 1, Article . Publication date: June 2023.

Procedural Metamaterials • 3

parametrized truss families with extremal properties. Our repre-

sentation is reminiscent of these approaches, and trivially captures

truss- or beam-based topologies that reside in a unit cube. However,

we expand this powerful graph-based representation by porting it

to architectures that are traditionally less amenable to exploration.

Solid Bulks. Solid bulks appear in many forms, including non-

periodic spinodoid topologies [Kumar et al. 2020], foams [Ashby

2006], and open-cell porous structures [Tian et al. 2020]. However,

we restrict ourselves to regular topologies, such as the topology-

optimized, cubic-symmetric structures of Schumacher et al. [2015].

Chan et al. [2020] proposed another set of cubic-symmetric struc-

tures based on the level sets of 36 crystallographic space groups.

Many CSG-like structures have also been hand-designed for specific

properties like phononic bandgap [Muhammad and Lim 2021]. Our

representation covers the vast majority of these regular structures.

Shellulars. Shellular units are often based on 2-manifold surfaces

[Nguyen et al. 2016] or non-manifold surfaces like cubic lattices and

honeycomb cells [Spadoni et al. 2014]. Several works also design

functionally-graded porous structures by spatially varying these

base surfaces [Hu et al. 2022b; Lu et al. 2014]. Our representation

captures a wide range of (non-)manifold surfaces, but the latter

examples are out of scope, as we focus on individual cells.

TPMS Shellulars. TPMS are minimal surfaces that tile seamlessly

along 3 mutually orthogonal directions in R3
. Non-self-intersecting

TPMS are of particular interest, as they partition the surrounding

volume into 2 or more distinct labyrinthine channels. Shellulars

based on TPMS are smooth and uniquely suitable for additive man-

ufacturing [Hu et al. 2022b; Qin et al. 2017; Yan et al. 2021, 2020],

making them ideal for tasks such as bone scaffolding [Ambu and

Morabito 2019; Ataee et al. 2018], static mixing [Ouda et al. 2020],

thermal energy management [Attarzadeh et al. 2022; Fan et al. 2022],

and strength-preserving lightweighting [Qin et al. 2017]. TPMS are

often created by Enneper-Weierstraß functions, specialized triangle

meshes [Reitebuch et al. 2019], or level sets of implicit functions. The

latter have enabled several TPMS explorer tools [Al-Ketan and Abu

Al-Rub 2021; Hsieh and Valdevit 2020; Jones et al. 2021; Maskery et al.

2022] and methods for hybrid TPMS creation. Feng et al. [2021] and

Khaleghi et al. [2021] construct hybrid TPMS by extracting isosur-

faces from weighted sums of TPMS’ trigonometric approximations,

while Chen et al. [2019] and Feng et al. [2021] use mesh Booleans.

Zhang et al. [2021] propose hierarchical TPMS structures, by assem-

bling small-scale TPMS cells into larger ones. Although promising,

these methods are limited by their reliance on structure-specific

TPMS representations, which are difficult to construct and combine

with other classes. Our approach addresses both limitations.

Alternatively, Akbari et al. [2020, 2022] construct surface- and

truss-based approximations of TPMS from physical principles, by

using 3D graphic statics to explore the dual graphs of geometric form
and static forces. To design hybrid TPMS, they specify the target

labyrinth(s) – i.e. channels of negative space surrounding the surface

– and then construct a surface that partitions the volume accordingly.

This scheme is powerful, but even domain experts struggle to relate

labyrinth-surface pairs [Schoen 2008]. Our approach takes input

describing the surface itself, rather than its voids.

As discussed in Sec 1, a critical element of our TPMS approach is

the CSCM, which was introduced by Lawson [1970] in S3
and then

adapted to R3
by Karcher [1989] with a discrete approach by Pinkall

and Polthier [1993]. This method (described in Sec 4) leverages a

surface’s associate family to construct complex TPMS indirectly. We

introduce the first automated, easy-to-use pipeline for this method.

2.2 Relevant Modeling Methods
Procedural Modeling. Procedural models “encapsulate a large vari-

ety of shapes into a concise formal description that can be efficiently

parametrized” [Krs et al. 2021], which lends them to a variety of tasks

including 2D textures and shaders [Cook 1984; Hu et al. 2022a; Perlin

1985; Shi et al. 2020] and virtual world modeling [Prusinkiewicz and

Lindenmayer 2004; Smelik et al. 2014; Whiting et al. 2009]. Graph-

based models are of particular interest, as they are widely-used in

practice (e.g. SideFX Houdini, Blender, Adobe Substance Designer)

and they are amenable to performance optimization [Boechat et al.

2016] and the intuitive specification of edits and constraints [Krs

et al. 2021; Michel and Boubekeur 2021]. Our procedural graph

builds on these ideas toward concise, intuitive metamaterial design.

Skeleton-Based Modeling. Skeletons have long been explored for

efficient shape representation, as many volumetric shapes are well-

approximated by lower-dimensional structures [Bærentzen and

Rotenberg 2021; Blum 1967]. Tagliasacchi et al. [2016] survey the

rich skeletonization literature, which generally tries to reduce a vol-
ume to a skeleton. By contrast, we specify skeletons to construct a
volume. Although most approaches approximate shapes with curve
networks, Tagliasacchi et al. [2012] observe that some shapes are best

represented by meso-skeletons containing a mix of curves and sur-

faces. As such, we develop a concise meso-skeleton representation

for shapes appearing in metamaterial design.

3 OVERVIEW
As suggested by Figure 1, regular cellular architectures are well-

suited for skeleton-based design, as they are often highly-symmetric

structures derived from lines, surfaces, and easily-reducible solid

primitives. We could imagine modeling any such metamaterial with

four simple steps: (1) build the skeleton for a small fundamental

piece of the structure, (2) assign a spatially-varying thickness profile

𝑇 (𝑝) for each point 𝑝 of the skeleton, (3) apply any transformations

(e.g. mirroring, rotation) required to fill the tiling unit, and (4) realize

the final volumetric object according to 𝑇 (𝑝). To achieve this sim-

ple approach, we must address 3 challenges. First, we characterize

the required skeletal elements and parametrize them in a concise,

consistent manner. Then, we embed our skeletal design space in a

representation that captures the 4-step approach above. Finally, we

envision a user-centric modeling process that is easy and intuitive.

3.1 Skeletal Design Space
Driven by our five target classes, our skeletal design space must

accommodate straight/curved beams, planar/curved shells, and basic

volumetric primitives such as cuboids and spheres. We posit that

line and surface skeletons are sufficient to capture these shapes,

when paired with a few annotations. To motivate and codify this

design space, we briefly examine the needs of each shape category.

, Vol. 1, No. 1, Article . Publication date: June 2023.

4 • Makatura and Wang, et al.

Fig. 2. Metamaterial construction. Our graphs succinctly create structures based on (top) a recently-discovered TPMS [Chen and Weber 2021], (middle)
auxetic curved beams [Jenett et al. 2020], and (bottom) a face-centered cubic solid [Lu et al. 2017]. Edge chains can be smooth (dashed) or non-smooth (solid).

Beams. Straight and curved beams are well-represented by line

skeletons, which follow a path given by an ordered list of vertices.

Curves can be created from concise vertex lists via e.g. natural cubic

spline interpolation. Thus, we need only introduce a “smoothness”

flag to determine whether individual segments should be straight

or smoothed. The final cross-section of the thickened beams can be

controlled by a spatially-varying thickness profile over the line.

Shells. Shells are best represented by surface skeletons annotated

with a spatially-varying thickness profile, as above. Surface skele-

tons are also amenable to an ordered-vertex parametrization, as

surfaces are frequently generated over a target boundary loop. For

example, the widely-studied Plateau problem spans a fixed boundary

with aminimal surface, which locally minimizes surface area and has

zero mean curvature everywhere [Harrison and Pugh 2016; Wang

and Chern 2021]. Minimal surfaces can also be given by the free
boundary problem, in which the input boundary is not fixed: each

boundary portion is restricted to lie in its given plane, but its spe-
cific shape is inferred automatically as it “slides” along the plane to

improve the metric [Karcher 1989]. For general TPMS construction,

both boundary types are required. To capture them, we devise a pair

of sliding solvers that take smoothness-annotated boundaries as

input: smooth boundary portions are permitted to slide, while non-

smooth portions remain fixed. The mixed minimal sliding solver is

used when at least one fixed edge is present, as in Figure 2 (top). For

fully sliding boundaries – which may otherwise degenerate – we

introduce the conjugate solver, based on our extended CSCM. Lastly,

we introduce direct solvers to generate (not necessarily minimal)

surfaces over fully-fixed boundaries; here, non-smooth boundary

portions remain straight while smooth portions are interpolated.

All of our solvers assume disc topology (genus 0), as higher-genus

surfaces can generally be decomposed. Critically, this also holds for

TPMS: despite having genus ≥ 3 [Garbuz 2010; Meeks 1975]), TPMS

can be decomposed via their symmetry lines (see Sec 4.1).

Volumetric Primitives. When combined with simple thickening

methods, lines and surfaces yield many basic primitives. For exam-

ple, by offsetting the thickness along the skeleton’s normal direc-

tion(s), we can transform a line into a cylinder or a square-bounded

planar surface into a cuboid. Similarly, by sweeping a sphere of

the desired radius across our line/surface skeleton, we can create

cylinders/cuboids with rounded ends/edges. This yields a sphere if

the underlying line has length zero, as in Figure 2 (bottom).

Unified Design Space. In summary, line and surface skeletons

capture our full set of target structures. Each skeletal element can be

given by: (1) a smoothness-annotated path over 3d vertices, (2) the

skeletal type/solver, (3) a spatially-varying thickness profile over

the element’s domain, and for sliding solvers, (4) a set of bounding

planes. Sec 4 and 5 explore the technical aspects of this design space.

3.2 Unified Procedural Graph
To facilitate the 4-stage modeling process posed above, we create a

procedural graph that unifies our skeletal design space with other

, Vol. 1, No. 1, Article . Publication date: June 2023.

Procedural Metamaterials • 5

pertinent operations. As shown in Figure 1 and 2, each graph node

performs an operation such as vertex creation, line/surface inference,

mirroring, or skeleton thickening. Each node also has properties

that control its behavior. For example, an edge chain has a smooth-

ness flag, and each surface node has a solver type and a thickness

profile. By chaining and sequentially evaluating these nodes, we can

form a variety of structures. We can also directly integrate nodes

for performance evaluation, including e.g. voxelization and simula-

tions for material property prediction. Sec 6 provides the full set of

operations, along with their properties and implementation details.

3.3 User Design Process
To conceptualize a structure in our representation, users work back-

ward through the stages of our procedural graph. First, users identify

symmetries (e.g. mirrors, rotations) to reduce the structure to its

smallest representative unit(s). After discounting thickness, they

arrive at the structure’s fundamental skeleton (FS), which resides in

the fundamental bounding volume (FBV). We support three scalable

FBV primitives (cuboid, triangular prism, and tetrahedron) and cus-

tom FBVs. An FBV typically occupies a small part of the unit cube,

though this needn’t be the case (Figure 2, bottom). Structures may

also contain multiple FS, each residing in a unique FBV. Once each

FS is identified, users can begin building the graph. The constituent

vertices and edge chains for each FS are given by tracing its guid-

ing/bounding path and classifying each portion as (non-)smooth. If a

boundary contains both smooth and non-smooth portions, multiple

edge chains are required (Figure 2, top). The edge chains are then

fed into a skeleton node, which can be transformed as needed to fill

the unit cube, and then thickened into an object. As the graph takes

shape, users must verify that all nodes’ required conditions are met

– e.g., for sliding solvers, all smooth boundary portions must lie on

an FBV face. All such requirements are detailed in Sec 6.

3.4 Outline
To build up a full understanding of our representation, we first ex-

plain our conjugate surface solver (Sec 4), which is critical for many

popular TPMS structures, and also our primary technical challenge.

In Sec 5, we discuss the remaining surface and line solvers, together

with our spatially-varying thickness annotations. The procedural

graph is detailed in Sec 6, then evaluated for expressiveness, com-

pactness, and intuitiveness in Sec 7, which includes a user study.

4 CONJUGATE SURFACE CONSTRUCTION
Our conjugate surface solver provides a stable approach for TPMS

whose FS is the solution to a free boundary problem – i.e., the FS

boundary consists entirely of sliding edges that are permitted to

change in order to reduce surface area. Under standard approaches

such as mesh-based gradient flows [Brakke 1992; Dziuk 1990], these

problems are prone to degeneration (see Supplement and [Karcher

and Polthier 1996]). However, by leveraging the associate family
of a minimal surface, the CSCM provides a stable 3-step approach

to these problems, as shown in Figure 3: (1) construct a related

Plateau problem, (2) solve it, and then (3) apply a simple transforma-

tion to obtain the solution to our original problem [Karcher 1989;

Karcher and Polthier 1996; Pinkall and Polthier 1993]. Although this

approach is powerful, existing algorithms require considerable do-

main expertise. We introduce a novel optimization loop to automate

the CSCM and make it accessible to novices. Although we defer

a detailed treatment of the CSCM to prior works, we provide the

critical intuition (Sec 4.1) before discussing our extension (Sec 4.2).

4.1 Background & Overview

An associate family 𝐹𝜙 (𝑢, 𝑣) is a set of minimal surfaces that can be

continuously transformed into one another by varying the scalar 𝜙 .

Some well-known families transform a catenoid into a helicoid, or a

Schwarz P surface into a Schwarz D (Figure 4). For special pairs of

surfaces 𝑆1, 𝑆2 ∈ 𝐹𝜙 (𝑢, 𝑣), the family can be parametrized as follows:

𝐹𝜙 (𝑢, 𝑣) = cos𝜙 · 𝑆1 (𝑢, 𝑣) + sin𝜙 · 𝑆2 (𝑢, 𝑣) (1)

= ℜ
(
𝑒−𝑖𝜙 · [𝑆1 (𝑢 + 𝑖𝑣) + 𝑖𝑆2 (𝑢 + 𝑖𝑣)]

)
, (2)

whereℜ(𝑧) returns the real part of a complex number 𝑧. As sug-

gested by the complex formulation, the special surfaces 𝑆1 (at 𝜙 = 0)

and 𝑆2 (at 𝜙 = 𝜋
2
) are said to be conjugate to one another. More gen-

erally, any two members 𝐹𝜃 and 𝐹𝜃+
𝜋
2 are conjugate to one another,

and every minimal surface is part of such a pair. These surface pairs

have several pertinent properties:

Proposition 4.1 (Conjugate Surface Properties). Let 𝑆 be a
minimal surface, and 𝐶 be its conjugate. Then, the following are true:

(a) For any arbitrary point (𝑢0, 𝑣0) in the domain, the surface
normals 𝑁𝑆 (𝑢0, 𝑣0) and 𝑁𝐶 (𝑢0, 𝑣0) are identical.

(b) 𝑆 and 𝐶 are isometric, so the angles at corresponding points
(𝑢0, 𝑣0) along the boundary are identical on both surfaces.

(c) If some portion of 𝑆 is bounded by a straight line, then the
corresponding portion of 𝐶 is bounded by a planar symmetry
line, and vice versa.

The symmetry lines noted in Proposition 4.1(c) are critical for

minimal surfaces (particularly TPMS), as they allow the surface to

be extended while preserving smoothness:

Proposition 4.2 (Minimal Surface Extension). Let 𝑆 be a min-
imal surface partially bounded by a symmetry line ℓ . Then:

(a) If ℓ is a planar symmetry line in plane 𝑝 , then ℓ must be fully
contained in 𝑝 , 𝑆 must meet 𝑝 orthogonally, and 𝑆 can be ex-
tended by reflecting across 𝑝 .

(b) If ℓ is a straight line, then 𝑆 can be extended by rotating 180
◦

about ℓ .

As hinted in Sec 3, symmetry lines can also be used to decompose
a complex surface into a fundamental patch 𝑃 bounded by symme-

tries. Then, by Proposition 4.1(c), 𝑃 has a conjugate 𝑃 bounded by

the opposite symmetries. Moreover, it is possible to construct one

surface from the other via a “conjugation” process [Karcher 1989;

Pinkall and Polthier 1993]. Thus, the problems of solving for 𝑃 and

𝑃 are equivalent. Since the term "conjugate" is overloaded – as the

relationship between 𝑃 and 𝑃 as well as the procedure that maps

between them – we call 𝑃 the primary surface and 𝑃 the dual.
The above equivalence is the foundation of the CSCM, which

is most powerful when the dual 𝑃 can be solved for more easily

, Vol. 1, No. 1, Article . Publication date: June 2023.

6 • Makatura and Wang, et al.

Fig. 3. Conjugate surface construction. Based on the (a) input, we (b) infer the angles and surface normals (blue) at each vertex, and (c) construct a dual
contour that respects these properties. Then, we (d) solve a Plateau problem over the dual contour, and (e) conjugate the dual surface to arrive at the primary
surface matching our original specifications. Finally, we (f) align the primary patch to the input and extend the patch to construct the full TPMS.

Fig. 4. Associate family and symmetry lines. The associate family trans-
forms a Schwarz P surface patch (left) into its conjugate Schwarz D patch
(right). The Schwarz P’s planar symmetry lines (e.g., red/green/blue curves)
morph into straight lines bounding the Schwarz D.

than our primary target, 𝑃 . For example, when 𝑃 is a free boundary

problem, its boundary 𝜕𝑃 contains only planar (sliding) symmetries;

thus, 𝜕𝑃 is a simple polygonal contour that admits a Plateau solution

[Gray andMicallef 2007]. The CSCM easily recovers 𝑃 by solving and

conjugating 𝑃 . The CSCM has fewer advantages when 𝜕𝑃 has mixed

symmetries, as 𝜕𝑃 is similarly complex. As such, we only apply the

CSCM (via our conjugate solver) when 𝑃 is a free boundary problem;

other cases are deferred to our mixed minimal solver (Sec 5.1.1).
The CSCM (Figure 3) contains several steps that arewell-established

and tangential to our extension; for a full description, we refer read-

ers to our Supplement and its references. Here, we need only discuss

the construction process for 𝜕𝑃 (from Figure 3b to 3c), as this is the

major limitation of existing CSCM algorithms.

By Proposition 4.1(a), the surface normal at each dual vertex

𝑣 ∈ 𝜕𝑃 must match that of the corresponding primary vertex 𝑣 ∈ 𝜕𝑃 .
Moreover, since 𝑃 is orthogonal to both bounding planes incident on

𝑣 (Proposition 4.2(a)), the normal at 𝑣 alignswith the intersection line

on which 𝑣 sits. By Proposition 4.1(b), the angle
1
between adjacent

edges incident on 𝑣 equals the dihedral angle spanned by the planes

incident on 𝑣 . These facts prescribe everything about 𝜕𝑃 except the

length of each edge. Boundaries with 4 vertices are determined up

to scaling due to the loop closure condition, but for 𝑁 vertices, there

are generally (𝑁 − 4) edge lengths that can be set arbitrarily.

Previous works require users to manually compute these edge

lengths using an iterative process that requires an understanding of

the relationship between 𝜕𝑃 and 𝑃 [Karcher and Polthier 1996]. This

is especially taxing when aligning 𝑃 with a given FBV, as the edges’

relative lengths determine the alignment – thus, they cannot be set

arbitrarily. Improper edge lengths may also preclude a valid solution

entirely: for the period problem, in which multiple portions of 𝜕𝑃

reside on the same bounding plane (see Table 2, “Wei’s genus 4”),

most length assignments fail [Karcher and Polthier 1996]. Existing

1
The angle is measured within the plane spanned by the pair of lines

ALGORITHM 1: MainConjugateSurfaceConstruction

Input: bounding planes 𝐵, closed edge loop 𝐿

Output: minimal surface 𝑃 solving the free-boundary problem

𝐻𝐵 ← convex polyhedron bounded by half-spaces of 𝐵

⊲ Find co-planar verts and vert angles/normals for dual contour

vA← EmptyMap(), vN← EmptyMap(), 𝑉 ← EmptyMap()

for vertex 𝑣 in counterclockwise traversal of 𝐿 do
𝑝1, 𝑝2 ← planes of 𝐵 containing 𝑣, with outward-facing normals

vA[𝑣] ← dihedral angle between 𝑝1, 𝑝2

vN[𝑣] ← normalize((normal of 𝑝1) × (normal of 𝑝2))

𝑉 [𝑝1].append(𝑣), 𝑉 [𝑝2].append(𝑣)
end
⊲ Find the rigid transformation for bounding plane alignment

𝑃 test, 𝐸test ← ContourEnergy(𝑙 init, vA, vN,𝑉 , 𝐻𝐵 , 𝐼)

𝐵test ← convex bounding volume of 𝑃 test

𝑅 ← rotation that best aligns 𝐵 and 𝐵test

⊲ Compute and post-process the best solution

𝑃, 𝐸 ← arg min

𝑙

ContourEnergy(𝑙 , vA, vN,𝑉 , 𝐻𝐵 , 𝑅)

return FixBoundary(𝑃)

ALGORITHM 2: ContourEnergy
Input: edge lengths 𝑙 , vertex angles vA, vertex normals vN, coplanar

vertex sets𝑉 , bounding polyhedron 𝐻𝐵 , rotation 𝑅

Output: primary mesh candidate 𝑃𝑙 , energy value 𝐸

𝑐 ← SolveContour(𝑙, vA, vN)

𝑃𝑙 ← SolvePlateauProblem(𝑐)

𝑃𝑙 ← 𝑅 · ConjugateSurface(𝑃𝑙)
𝐸 ← 𝐸contour (𝑃𝑙 ,𝑉 ,𝐻𝐵)
return 𝑃𝑙 , 𝐸

methods rely on a manual intermediate value argument that cannot

readily expose the permissible values. Our approach identifies a

valid solution while obscuring the CSCM details and reducing the

required user expertise (as evidenced by the user study in Sec 7.3).

4.2 Our Edge Length Optimization
To address the limitation of existing CSCMs, we devise a fully-

automated solver (Algorithm 1) for free-boundary problems given

by a set of boundary planes 𝐵 and an ordered edge loop 𝐿 over these

, Vol. 1, No. 1, Article . Publication date: June 2023.

Procedural Metamaterials • 7

planes. We propose an optimization loop that finds edge lengths 𝑙

for the dual contour 𝜕𝑃 , such that the final surface 𝑃 conforms to 𝐵.

4.2.1 Pre-processing. To prepare for our optimization, we first infer

the normals and angles at each vertex of 𝜕𝑃 , as described in Sec 4.1. In

addition, we compute the convex polyhedron𝐻𝐵 that is enclosed by

the half spaces given by 𝐵. We also infer𝑉 : = {𝑉0, . . . ,𝑉𝐾−1}, where
𝐾 is the number of planes in 𝐵 and𝑉𝑖 is the set of vertices from 𝐿 that

belong to plane 𝑖 . These vertex sets can be used w.r.t. any primary or

dual surface, since we know the pointwise correspondences for any

point in 𝐿 by construction. Finally, we compute a rotation 𝑅 that will

align the candidate primary surfaces to 𝐵 for comparison. To do this,

we first construct a sample primary mesh 𝑃 test. We fit a plane to each

co-planar vertex set𝑉𝑖 along the boundary of 𝑃 test, which results in

a set of 𝐾 boundary planes 𝐵test, as shown in Algorithm 1. We use

the approach of Müller et al. [2005] to find the 𝑅 that best aligns the

normals of 𝐵 and 𝐵test. We need only compute 𝑅 once because all

future candidate primary surfaces (and thus, their bounding planes)

will share the same orientation; only the scale will differ.

4.2.2 Objective function. To judge each candidate contour with

lengths 𝑙 = {𝑙𝑖 }, we devise a two-term objective function

𝐸contour (𝑃𝑙 ,𝑉 , 𝐻𝐵) = 𝐸BV (𝑃𝑙 ,𝑉 , 𝐻𝐵) + 𝐸coplanar (𝑃𝑙 ,𝑉) ,
where 𝑃𝑙 is the primary mesh output by the CSCM on a contour

with lengths 𝑙 , 𝐸BV penalizes differences between the boundary

planes of 𝑃𝑙 and our target planes 𝐵, and 𝐸
coplanar

penalizes the

mis-alignment of boundary vertices in 𝑃𝑙 that are supposed to be

co-planar.

First, we find the bounding planes 𝐵𝑙 for 𝑃𝑙 by fitting a plane to

each co-planar vertex set 𝑉𝑖 . Since 𝑅 has already been applied to 𝑃𝑙 ,

we set the normal 𝑛𝑖 to be the normal of plane 𝑖 in 𝐵. The plane’s

origin 𝑐𝑖 is given by 𝑐𝑖 =
1

|𝑉𝑖 |
∑
𝑗∈𝑉𝑖 𝑝 𝑗 , where 𝑝 𝑗 is the position of

the 𝑗𝑡ℎ vertex. Then, 𝐸
coplanar

can be defined as follows:

𝐸
coplanar

=

𝐾−1∑︁
𝑖=0

∑︁
𝑗∈𝑉𝑖

(
𝑛𝑇𝑖 (𝑝 𝑗 − 𝑐𝑖)

)
2

. (3)

Finally, to evaluate 𝐸BV, we compute the convex polyhedron that

is enclosed by the half-spaces of 𝐵𝑙 . We use the iterative closest

point (ICP) algorithm [Amberg et al. 2007] to align this polyhedron

with our reference, 𝐻𝐵 . We only permit translation, as the rotation

𝑅 has already been accounted for. After alignment, 𝐸BV is given by

the mean squared distances between the two polyhedra. As we only

consider translation, we did not encounter unconverged ICP results

during our optimization.

The method above is designed for arbitrary convex bounding

polyhedra. However, when the polyhedron 𝐻𝐵 is an Axis-Aligned

Bounding Box (AABB) – i.e., six axis-aligned planes forming a cuboid

space – we can leverage a stronger objective. Namely, for any pair of

points 𝑝 𝑗 , 𝑝𝑘 on opposite, parallel planes of the AABB with normal

𝑛𝑎 , we know the expected distance 𝑑𝑎 between 𝑝 𝑗 and 𝑝𝑘 along 𝑛𝑎 .

Thus, we can encode both 𝐸BV and 𝐸
coplanar

if we ensure that all

such pairs 𝑝 𝑗 , 𝑝𝑘 are distance 𝑑𝑎 apart in the normal direction, i.e.

𝐸AABB
contour

=

3∑︁
𝑎=1

∑︁
𝑗∈𝑉𝑎,1

∑︁
𝑘∈𝑉𝑎,2

(
[𝑛𝑇𝑎 (𝑝 𝑗 − 𝑝𝑘)]2 − 𝑑2

𝑎

)
2

, (4)

where 𝑎 is the axis index for the {𝑥,𝑦, 𝑧} directions, 𝑛𝑎 is the unit
axis-𝑎 direction, 𝑉𝑎,1 and 𝑉𝑎,2 are the sets of boundary vertices on

each opposing plane with normal 𝑛𝑎 , and 𝑑𝑎 is the target distance

between the two planes in direction 𝑛𝑎 .

4.2.3 Regularizing edge lengths. On each evaluation of the energy

function (Algorithm 2), we have a set of suggested lengths 𝑙 input

over the contour that may or may not form a closed loop. We verify

the closedness and/or adjust the lengths as necessary by solving the

following mini-minimization problem during SolveContour:

arg min

𝑙base

∑︁
𝑖

(𝑙base𝑖 − 𝑙 input
𝑖
)2, (5)

s.t.

∑︁
𝑖

𝑙base𝑖 𝑒𝑖 = 0, (6)

where 𝑙base
𝑖

is the edge length that will be used as the base guess for

edge 𝑖 on this iteration and 𝑒𝑖 is the contour edge direction given

by vA and vN. The linear constraint guarantees that 𝑙base
𝑖

forms a

closed loop. Since this is a quadratic energy with linear constraints,

𝑙base
𝑖

is obtained by directly solving a small linear system.

4.2.4 Initialization. To seed our optimization and create 𝑃 test, we

find an initial guess 𝑙 init for the contour lengths. By construction,

all input vertices lie on the edges of the convex polyhedron 𝐵, and

contour edges lie on the faces of 𝐵. As shown in the inset, we

categorize each contour edge 𝑒𝑖 based on its

endpoints, which can be on (1) two neigh-

boring polyhedron edges ℎ1, ℎ2; (2) two non-

neighboring polyhedron edges ℎ1, ℎ2 on the

same face; or (3) the same polyhedron edgeℎ1.

The input edges for each case are shown in

red, and the corresponding arcs along the pri-

mary surface 𝑃 are shown in green. Although

the green curves are not known a priori, each case behaves in a

relatively consistent manner – as evidenced by e.g. Proposition 4.2,

which implies that final contour edges must intersect polyhedron

edges perpendicularly. The expected length of each green curve pre-

dicts the corresponding dual length because lengths are preserved

due to isomorphism (Proposition 4.1(b)). Thus, based on the ex-

pected shape of each final contour, we developed a simple heuristic

(shown in purple) for the initial length 𝑙 init
𝑖

of 𝑒𝑖 in each case. In

case (1), 𝑙 init
𝑖

is the length of an arc between ℎ1 and ℎ2, assuming

the arc is part of the circle whose center is the intersection point

of ℎ1 and ℎ2, and whose radius is the average distance from each

endpoint of 𝑒𝑖 to the circle center. In case (2), 𝑙 init
𝑖

is the distance

between the endpoints of 𝑒𝑖 . In case (3), we let the distance between

the endpoints be the diameter of a circle whose center is the mid

point of ℎ1; then, 𝑙
init

𝑖
is half of the circle’s perimeter.

4.2.5 Optimization. Beginning from 𝑙 init, we optimize the energy

given in Algorithm 2 using the gradient-free Nelder–Mead method

[Nelder and Mead 1965]. Because it is common to have large differ-

ences in absolute edge lengths, the optimization converges faster

if we optimize the ratio to each edge’s base length, rather than the

absolute length itself. By defining the optimization over this ratio

space, we can also easily define generic lower and upper bounds for

each edge length. We use 0.1 and 10, respectively.

, Vol. 1, No. 1, Article . Publication date: June 2023.

8 • Makatura and Wang, et al.

4.2.6 Post-processing. After constructing a suitable primary mesh

𝑃 , we apply our previously-computed rotation to ensure that the

returned surface aligns with 𝐵. Although the overall agreement is

quite high, numerical issues frequently cause the vertices of our

conjugated surface boundary to be slightly offset from their intended

planes. To resolve this issue, we “snap” all boundary vertices to their

intended boundary planes. We do this via our direct surface solver

(described in Sec 5.1.2). For this, we treat 𝑃 as our rest shape and

compute the target position for each boundary vertex by projecting

its current position to the target plane. Our small discrepancies only

induce a slight deformation of 𝑃 , so the accuracy of our result is

unaffected, as shown in Sec 7.1.

5 COMPLETE SKELETAL DESIGN SPACE
The conjugate surface solver described above lets us solve free-

boundary problems in a stable manner. Now, we round out our

skeletal design space by describing the remaining skeletal solvers

and our spatially-varying thickness specification.

5.1 Surfaces
To complete our surface design space, we describe themixedminimal
and direct surface solvers. Figure 5 highlights the variation within

our surface space by showing the result of each solver over identical
annotated boundary loops and planes.

5.1.1 Mixed Minimal. Our mixed minimal surface type is a sliding

solver for boundaries that are at least partially fixed, such as the FS

of the TPMS from Hao Chen’s 𝑜Δ/𝑡Δ family (Figure 2, top). As dis-

cussed in Sec 3, the shape and location of all non-smooth boundary

segments are preserved, such that the boundary of the computed

surface coincides precisely with all fixed input. Smooth (or “sliding”)

segments have much more freedom, as they are treated like free

boundaries that are permitted to deform within the given boundary

plane. To achieve a minimal surface subject to these constraints,

we perform a mean-curvature flow algorithm that imposes Dirich-

let boundary conditions along any fixed boundaries and sliding

constraints along sliding boundaries.

5.1.2 Direct. Direct surfaces yield more general (non-minimal) sur-

faces over fully-fixed boundaries. Segments contained in a non-

smooth edge chain remain straight, while smooth edge chains are

first interpolated into a curve according to the description in Sec 5.2.

Then, we apply a standard thin-shell model defined over a surface

that is subject to fixed boundary constraints:

arg min

𝑥
𝐸
inplane

(𝑥) + 𝛼𝐸
bend
(𝑥) , (7)

where 𝐸
inplane

penalizes in-plane stretching, 𝐸
bend

penalizes bend-

ing, and 𝛼 is the energy weight. By default, we set 𝛼 = 0.1 to

prioritize 𝐸
inplane

. Although any such model would be suitable, we

use the definition of Bouaziz et al. [2014] and the implementation

of ShapeOp [Deuss et al. 2015] for fast performance.

To measure this deformation energy, we must define a rest shape

for the surface patch. We could use a hole-filling algorithm to gen-

erate an initial surface that spans the boundary loop, but com-

plex boundaries often yield poorly-behaved or low-quality trian-

gle meshes. Instead, we use a default rest shape for all boundary

Fig. 5. Surface types over identical input. A given FBV and annotated
boundary (where dashed edges are smooth and others are not) can generate
many outputs based on the selected surface type: method (a) preserves the
dashed line; (b) allows it to deform into a curve within its plane; and (c)
allows sliding not only for this edge, but for all edges, as our conjugate
solver assumes fully-sliding boundary loops regardless of annotations.

loops: namely, a circular patch that is much smaller than the input

boundary. This forces a large stretching deformation to meet the

target boundary; coupled with a de-emphasized bending energy

(e.g., 𝛼 = 0.0), this encourages a smooth surface that approximates

a minimal surface. By adjusting 𝛼 , it is possible to deviate from this

behavior to produce a wide range of surface patches.

5.2 Lines
Line skeletons are represented by a sequence of 3D points, which

can form any open, non-branching path or simple closed loop (if the

endpoints are identical). Along non-smooth edge chains, neighbor-

ing vertices are connected by straight lines. Each smooth edge chain

is interpolated to form a natural cubic spline that passes through

the input points with C2 continuity everywhere. We use natural

cubic splines because they are simple, intuitive, and familiar, thanks

to their widespread use in other modeling tools. To address con-

cerns that are specific to cellular metamaterial design, we adjust

the standard spline solver to permit (1) C2 continuity along closed

loops and (2) curves that tile smoothly across a periodic boundary.

We address ill-defined curves (with < 4 vertices) by computing a

quadratic spline (3 vertices) or a straight line (2 vertices).

5.3 Spatially-Varying Thickness
To control how each skeletal element should be instantiated as a

volumetric object, we include a spatially-varying thickness function

over the element’s domain. This function is given by sparse input:

the user specifies the thickness at a few sample points, and then

these values are interpolated over the full domain. The values are

computed and stored w.r.t. a simple parametrization of the domain,

rather than actual vertex positions along the skeletal element. For

lines, we use a 1D parametrization 𝛾 (𝑡) for 𝑡 ∈ [0, 1]. The full thick-
ness profile is linearly interpolated from the provided sample points.

For surfaces, which have disc-topology, we de-

fine thickness w.r.t. a UV-domain computed

via the as-rigid-as-possible parameterization

in libigl [Jacobson et al. 2018; Liu et al. 2008].

Then, as shown in the inset, we interpolate the

thickness by treating each sample point (white

dot) as a handle and computing bounded bihar-

monic weights over the domain [Jacobson et al. 2011].

, Vol. 1, No. 1, Article . Publication date: June 2023.

Procedural Metamaterials • 9

Table 1. Node types and their inputs. Brackets around an input indicate that there can be multiple nodes of the same type fed into the given node.

Node Type Color Code Input Properties Requirements

Vertex v - position -

Topology

Edge Chain e {Vertex} vertex order; smoothness At least two vertices; branch-free

Line l {Edge Chain} thickness profile Edge Chains form a single branch-free path

Surface s {Edge Chain}

surface type; thickness profile;

energy weights (direct surface only)

Edge Chains must form a simple closed loop

Dual Surface dual Surface - The input surface must be of type “conjugate”

Mirror mirror Skeleton mirror direction; origin; do copy -

Transform t Skeleton

origin; scale; rotation angle, axis;

translation; do copy

-

Associate Family af Skeleton ×2 angle 𝜙 Inputs 1 & 2 must belong to the same associate family

Skeleton

Group g {Skeleton} - -

Object (Solidify) obj Skeleton grid resolution, extrusion method

CSG Boolean bool {Object} boolean type Inputs must have the same grid resolutionSolid

Voxel vox Object 𝐸, 𝜈 , 𝜌 at most 1 vox node in a graph

Material Matrix mat Voxel - -
Material

Properties
Phononic Bandgap pbg Voxel #curves; #samples per curve; tol; -

6 PROCEDURAL GRAPH FOR METAMATERIALS
Building atop our skeletal design space, we introduce a procedural

graph that facilitates the full metamaterial design process, from

initial shape specification to material property prediction. We sum-

marize our node types in Table 1, including their inputs, properties,

and requirements. In this section, we expand on the design logic

and implementation for each node.

6.1 Vertex and Edge Chain Nodes
A vertex node is the simplest node in our graph: it places a vertex at

the 3D location given by its “position” property. Vertex nodes do not

accept any input node connections. The next simplest node is the

edge chain, which accepts a set of vertex nodes as input, and then

instantiates a path over these vertices in the traversal order that is

stored as a property of the edge chain node. As discussed, each edge

chain also has a “smoothness” flag which is used by the subsequent

line or surface node(s) to facilitate the variations described in Sec 5.

6.2 Line Nodes
Our line node accepts a set of edge chains that are continuously
traversable – i.e., the end of one edge chain is the start of another,

such that they form a simple, non-branching path (open or closed).

As discussed in Sec 5, the shape of a line is determined by the

smoothness of each constituent edge chain. A line node can accept

any combination of smooth and fixed edge chains, as long as they

are continuously traversable. For more complicated paths, multiple

line nodes must be defined. The spatially-varying thickness function

for each line node is given as in Sec 5.3.

6.3 Surface Nodes
Our surface node accepts a set of edge chains that form a sim-

ple closed edge loop, over which we instantiate a surface patch.

Users first select a surface type from among mixed minimal, con-
jugate, and direct. This selection determines the algorithms used

to interpret the boundary and solve for the final surface, as de-

tailed in Sec 5. It also dictates the requirements and properties for

the surface node. For direct surfaces, the user need only provide

the energy weight 𝛼 (see Sec 5.1.2) and a non-degenerate, simple,

closed boundary loop over vertices located anywhere in the FBV.

For conjugate and mixed-minimal surfaces, each

sliding segment must lie on an FBV face. Mixed-

minimal surfaces permit vertices anywhere on

an FBV face (see Table 2, “Deformed H”). Conju-

gate boundaries are more restricted, to satisfy the

properties of Sec 4.1. Specifically, all vertices must

lie on FBV edges and form property-respecting

configurations, as shown in the inset. The bottom

inset is invalid because the surface normal (blue)

cannot align with the FBV edge as required.

We also have dual surface and associate family nodes to ex-

plore the families given by Equation 1. This lets us capture and

explore intermediate surfaces like the Gyroid (see Sec 7.1).

6.4 Mirror, Transform, and Group Nodes
To build full translational units from a structure’s FS, we provide

standard geometric transformations such as themirror node. We

also support translation, rotation and scaling via the transform
node, as well as the ability to combine a set of skeletal elements

into one unit via the group node. Each of these nodes takes one or

more “skeletons” as input, which may be a line, a surface, or the

output of one of the transformation nodes above. The user can select

whether the transformation is applied to a copy of the input skeleton

(“doCopy”=true) or to the input skeleton itself (“doCopy”=false).

6.5 Object, CSG Boolean, and Voxel nodes
To generate volumetric objects, our object node thickens each

skeletal element based on its interpolated thickness profile. First,

we instantiate a regular grid over a unit cube, which will store an

indicator function that tracks whether each grid point is inside or

outside of the object. The grid resolution is a property of the object

node, along with the desired extrusion method. As suggested in

Sec 3, we support two extrusion approaches: spherical and normal.
For spherical extrusion, we densely sample the skeleton and – for

each sample point – we splat a sphere onto the indicator function

, Vol. 1, No. 1, Article . Publication date: June 2023.

10 • Makatura and Wang, et al.

grid, using a sphere diameter equal to the sample point’s prescribed

thickness. For normal extrusion, the offsets are applied along the

normal direction at each sample point. For surfaces, we offset each

vertex by one-half of the desired thickness along each orientation

(±) of its normal. For lines, we sweep a scaled circular cross-section

along the skeleton to create a tube. These methods are illustrated in

the Supplement. After extrusion, we compute the indicator function

for each resulting geometry and union them together. To preserve

tileability, we require identical function values for each pair of cor-

responding grid points on opposite boundary faces. Finally, we

perform marching cubes on the indicator function [Lorensen and

Cline 1987] to extract the object mesh.

We also provide a CSG boolean node that supports union, in-

tersection and difference operations on a set of volumetric objects,

as shown in our Supplement. For efficiency, we compute Boolean

operations on the underlying indicator functions for each object;

then, we enforce tileability and perform marching cubes as before.

Lastly, we use the indicator function to implement our voxel node,
which creates voxelized meshes suitable for property prediction.

6.6 Metamaterial Property Nodes
As a proof of concept for fully-integrated design, we implement two

property prediction nodes: material matrix and phononic bandgap.

Thematerial matrix node computes the stiffness tensor of the

volumetric structure given by our graph.We implement the homoge-

nization approach of Panetta et al. [2015] to compute the equivalent

stiffness tensor matrix 𝐶 , assuming periodic boundary conditions

and a linear elastic material over our voxel mesh. All linear systems

were solved using Intel MKL Pardiso [Schenk and Gärtner 2004].

We also use 𝐶 to compute and display the “material sphere” that

illustrates the (an)isotropy of each structure (Figure 11(c)).

The phononic bandgap node predicts a structure’s ability to

prevent the propagation of waves in certain frequency ranges, to-

ward applications such as frequency filters, beam splitters, waveg-

uides, and sound/vibration protection devices. The blocked ranges

are known as bandgaps, and they are often the result of structural

frequency-filtering mechanisms such as Bragg scattering and local

resonances. We predict the bandgap using the approach of Åberg

and Gudmundson [1997], which generates a set of dispersion curves
showing the structure’s eigenmodes over varying wave vectors (Fig-

ure 12, light blue). We process these curves in search of horizontal

bands through which no curves pass (Figure 12, grey rectangles).

Each such area is a bandgap, as it indicates that the given frequency

range has no viable transmission path through the structure.

7 RESULTS
We implement our procedural graph in C++, with an OpenGL-based

GUI for interactive design. We performed all experiments on Ubuntu

20.04 using an AMD Ryzan 5950X CPU (16 cores) with 64GB RAM.

7.1 Conjugate Surface Construction
To evaluate our CSCM,we reproduce a variety of TPMSwhose FS are

given by free-boundary problems, including the popular Schwarz P,

Neovius, and Schoen I-WP structures. As shown in Figure 6, our sur-

faces exhibit strong agreement with the ground truth TPMS given

Fig. 6. Conjugate Surface Accuracy.We compare our conjugate TPMS to
the ground truth Enneper-Weierstraß functions integrated over a unit cell.
The error is the distance between each vertex of our surface and its closest
point on the analytical surface. The average errors are 0.001, 0.001, 0.003,
and 0.002, with maximal errors of 0.005, 0.004, 0.007, and 0.007, respectively.

Fig. 7. Convergence of edge length optimization. We demonstrate
convergence for the 4 TPMS with the longest optimization times, which use
different FBVs: Schoen I-WP uses a prism, while the others use an AABB.

by the Enneper-Weierstraß functions integrated over a unit cell. We

obtained each ground-truth surface via a publicly-available Mathe-

matica notebook [Weber 2018a,b,c,d], from which we extracted and

uniformly rescaled exactly 1 translational cell of unit size.

Figure 6 also shows our accurate reproduction of the gyroid,

which is one of very few TPMS that do not contain any straight or

planar symmetry lines. This seems to render the gyroid incompatible

with our method. However, the gyroid is a known member of the

Schwarz P/D associate family: assuming that 𝐷 occurs at 𝜙 = 0, the

gyroid occurs at 𝜙 ≈ 38 [Karcher 1989]. Thus, we can construct a

patch of the gyroid by creating the P and D structures via our CSCM,

then interpolating via the associate family node.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Procedural Metamaterials • 11

Fig. 8. Robustness of edge length optimization. Although different
vertex positions (red) yield different initial edge lengths, our optimizer
consistently converges to the same TPMS patch, even across different FBVs.

We ensure that our optimization converges reliably for all of our

examples, including those in Table 2 and hundreds of randomly-

generated structures (Figure 9). Even the most intensive structures

in Table 2 converge within 80 iterations, as shown in Figure 7.

Moreover, Figure 8 demonstrates that our algorithm’s output is

stable w.r.t. the input vertex positions and initial edge lengths 𝑙 init.

The only difference is that more accurate initial guesses permit

faster convergence, as evidenced by Tables 2 and 4.

7.2 Representing Established Cellular Structures
We use our procedural graph to recreate structures from litera-

ture that span all of our target classes. As a simple test, we first

re-implement the exhaustive truss-based exploration strategy of

Panetta et al. [2015], and arrive at the same collection of 1205 valid

topologies in our representation. We also recreate a number of other

structures found in literature. Tables 2 and 3 show the final geometry

for a selection of our structures, which were created from scratch

in our GUI, following the design process of Sec 3.3. Table 4 gives a

detailed list of nodes used for each structure, along with the com-

putation time required to evaluate our full procedural graph. The

minimal, median, average, and maximal number of nodes used is

12, 16, 19.1, and 34, respectively. This demonstrates that our graph

is both lightweight and versatile. Furthermore, the computation

time shown in column 𝑡 demonstrates that our system is able to

quickly produce the final structure from the sparse graph input,

with median, average, and max time costs being 0.72s, 2.31s, and

21.91s, respectively. Thus, our method can be used to create and

modify metamaterials at interactive rates.

7.3 User Study
To evaluate the expressiveness, compactness, and ease-of-use of our

approach, we invited 10 participants to model several metamaterials

using our procedural graph. We sought participants with varying

degrees of expertise in metamaterials, 3D modeling, and minimal

surface theory. Many participants self-identified as a novice in 1, 2,

or all 3 domains, but nobody identified as an expert in all domains.

Procedure. The study generally took 3-4 hours per user and con-

tained 5 stages: (1) a pre-survey; (2) a brief presentation introduc-

ing the project goal and our representation; (3) a guided modeling

session to practice conceptualizing/building structures using our

representation; (4) an independent modeling session, in which the

participant constructed 6 target structures; and (5) a post-survey.

Our Supplement provides a detailed account of each stage, as well

as the participants’ responses/results. As noted to our users, the

study is primarily concerned with the intuitiveness and flexibility

of the procedural graph representation, not the interactive tool.

Our primary experiment occurred in stage (4), as participants

independently modeled 6 structures given by target 3D meshes. The

target structures spanned all of our major classes, so we could ex-

amine our method’s overall expressivity and ease-of-use. To reduce

undue burden on the participants, we asked them to focus on repro-

ducing each target’s main structure, rather than precisely inferring

continuous parameter values for e.g. thickness or vertex positions.

Main Results. All 10 users successfully reproduced all 6 struc-

tures, independent of prior experience. A subset of the structures are

shown in Table 5, along with statistics about the time and number of

nodes required to represent them. Out of the 60 total modeling tasks,

56 (93%) were completed in ≤ 30 minutes and 45 (75%) were com-

pleted in ≤ 20 minutes. In the post-survey, users also indicated high

levels of confidence that they could implement unseen structures

of the various classes in the future. Moreover, the overwhelming

majority of users (90%) agreed that the process of modeling a diverse

set of metamaterials would be easier/more intuitive in terms of our

proposed procedural graph than it would be in terms any single

other representation.

Curved shells presented the largest challenge, as users uniformly

reported the lowest degree of confidence in – and highest degree of

difficulty with – these structures. Nevertheless, all users succeeded

in the curved shell tasks, and 90% of them expressed that it would

have been more difficult or impossible to represent these structures

using any other approach. This is particularly true of Hao Chen’s

and Wei’s TPMS, as neither structure currently has a trigonometric

approximation; this typically renders them inaccessible to designers,

but our representation provided novice access to both. Moreover, the

presence of a traditionally-challenging period problem (see Sec 4.1)

in Wei’s genus 4 was a non-issue for our users; in fact, this structure

required the lowest average modeling time of all. Overall, this user

study confirms the expressiveness, compactness, and ease-of-use of

our proposed representation, as even novice modelers can rapidly

and faithfully realize a wide range of design intents.

8 APPLICATIONS
Armed with our procedural graph representation, we envision sev-

eral exciting possibilities for future metamaterial exploration.

8.1 Automated Structure Generation
Due to its compact form, our representation is conducive to au-

tomatic exploration. As a proof of concept, we devise simple ex-

ploration strategies for structures in two classes: straight trusses

and shellulars. For a detailed explanation of these strategies, please

see the Supplement. Our truss exploration can generate a virtually

unlimited number of structures due to the relatively unconstrained

space for trusses. Valid shellular graphs are considerably more re-

stricted, but our methods still generate hundreds of orthotropic and

general asymmetric shellular structures. In particular, we obtained

1000 direct structures in approximately one hour, 498 conjugate

, Vol. 1, No. 1, Article . Publication date: June 2023.

12 • Makatura and Wang, et al.

Table 2. TPMS Boundary loops. We represent several well-known TPMS using a small set of vertices and a single boundary loop. Column “S” indicates the
name and type of each structure: a blue label indicates a direct surface, green indicates a mixed-minimal surface, and white indicates a conjugate surface. For
each structure, we show the boundary loop and bounding planes (“vtx/edge”), the generated surface patch (“patch”), and the final volumetric structure (“obj”).

S vtx/edge patch obj S vtx/edge patch obj

S
c
h
w
a
r
z
P

W
e
i
’
s
g
e
n
u
s
4

N
e
o
v
i
u
s

S
c
h
o
e
n
S
’
-
S
”

S
c
h
o
e
n
I
-
W
P

D
e
f
o
r
m
e
d
S
c
h
o
e
n
S
’
-
S
”

S
t
e
ß
m
a
n
n

S
c
h
w
a
r
z
D

S
c
h
w
a
r
z
C
L
P

S
c
h
o
e
n
R
2

H
a
o
C
h
e
n
’
s
𝑜
Δ
/𝑡
Δ

D
e
f
o
r
m
e
d
H

G
y
r
o
i
d

primary conjugate 𝜙 ≈ 52
◦

object

, Vol. 1, No. 1, Article . Publication date: June 2023.

Procedural Metamaterials • 13

Table 3. Varied cellular metamaterials.We represent a variety of metamaterial architectures, including some from literature and others of our own creation.

S Schwarz P+ Neovius Schwarz P+Cubic Open Schwarz P+Cubic Closed assembled assembled2 assembled3

o
b
j
e
c
t

g
r
a
p
h

S octet auxetic3d twist-tilable twist-tilable-bezier bandgap FCC lattice

o
b
j
e
c
t

g
r
a
p
h

S anti-chiral star-shaped structure non-manifold surface polyhedral cell our composition 6-hole BCC

o
b
j
e
c
t

g
r
a
p
h

structures in four hours, and 500 general asymmetric structures

in three hours. This exploration returned an enormous collection

of unstudied direct shellulars and a mix of established and novel

TPMS shellulars, as shown in Figure 9. The presence of established

structures confirms that our representation encompasses critical

regions of the cellular metamaterial design space, while the pres-

ence of novel structures indicates its potential for innovation. Our

structures are also tilable by construction and (in all observed cases)

physically realizable via inkjet-deposition additive manufacturing
2
.

Figure 10 shows photographs for four of our fabricated structures,

which each feature a 3× 3× 3 tiling of our unit cell, with a total size

of 9cm in each dimension and a minimum wall thickness of 1mm.

2
https://inkbit3d.com/

8.2 Material Properties
Ourwork also presents opportunities for performance-driven design

and shape optimization, as even our randomly-generated structures

exhibit a wide range of interesting material properties. We consider

predictions for the stiffness tensor and phononic bandgap, using a

basematerial with Young’smodulus𝐸=1Pa,mass density 𝜌=1kg/m3
,

and Poisson’s ratio 𝜈=0.45.

8.2.1 Stiffness Tensor. We use homogenization to compute the stiff-

ness tensors for all of our established and randomly-generated struc-

tures. To generate each input mesh, we run voxelization with a grid

resolution of 100
3
, such that each voxel is of size 0.01

3
.

We begin by examining the homogenized material properties for

all of the orthotropic structures with thickness 0.02 (Figure 11(a)).

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://inkbit3d.com/

14 • Makatura and Wang, et al.

Table 4. Procedural graph statistics. For each structure, we list the total number of nodes (#all) as well as a breakdown by node type: vertex (#vtx); edge
(#e); line (#l); surface/dual surface (#s), transformation/mirror/group (#T), object (#o), and voxel (#vox). We also show structure type (“type”):“c” refers to
conjugate surface, “d” denotes direct surface, “m” is mixed minimal surface, and “l” is for lines. Finally, we list the time cost to evaluate each graph (𝑡 [s]).

structure #vtx #e #l #s #T #o #vox #all type 𝑡

Schwarz P
(1)

6 1 0 1 3 1 1 13 c 0.44

Wei’s genus4
(1)

7 1 0 1 3 1 1 14 c 5.99

Neovius
(1)

4 1 0 1 8 1 1 16 c 0.72

Schoen S’-S”
(1)

7 1 0 1 3 1 1 14 c 14.16

Schoen I-WP
(1)

6 1 0 1 4 1 1 14 c 3.20

Deformed Schoen S’-S”
(1)

7 1 0 1 3 1 1 14 c 21.91

Steßmann
(1)

6 1 0 1 3 1 1 13 d 1.33

Schwarz D
(1)

6 1 0 1 2 1 1 12 d 0.72

Schwarz CLP
(1)

6 1 0 1 2 1 1 12 d 0.82

Schoen R2
(1)

8 4 0 1 3 1 1 18 m 1.46

Hao Chen’s 𝑜Δ/𝑡Δ (1) 6 4 0 1 3 1 1 16 m 0.61

Deformed H
(1)

10 4 0 1 5 1 1 22 m 0.72

Gyroid
(1)

6 1 0 2 16 1 1 27 c 0.57

Schwarz P+Neovius
(2)

13 2 0 2 9 1 1 28 c 1.56

Schwarz P+Cubic Open
(2)†

13 2 0 2 6 1 1 25 c+d 0.89

Schwarz P+Cubic Closed
(2)

10 2 0 2 6 1 1 22 c+d 0.93

assembled
(3)

7 1 1 0 9 1 1 20 l 0.28

assembled2
(3)

4 2 1 0 6 1 1 15 l 0.21

assembled3
(3)†

5 2 1 0 5 1 1 15 l 0.28

octet
(4)

3 1 1 0 5 1 1 12 l 0.24

auxetic3d
(5)

6 2 2 0 5 1 1 17 l 0.25

twist-tilable
(6)

8 5 5 0 13 1 1 33 l 0.23

twist-tilable-bezier
(6)†

9 5 5 0 13 1 1 34 l 0.25

bandgap
(7)

6 3 3 0 14 3 1 30 l 1.18

3D FCC lattice
(8)

6 3 3 0 3 3 1 19 l 0.43

anti-chiral
(9)

4 2 1 0 4 1 1 13 l 0.18

star-shaped structure
(10)

5 2 1 1 4 1 1 15 l+d 0.77

non-manifold surface
†

8 3 0 3 4 1 1 20 d 1.32

polyhedral cell
(11)

6 1 0 1 3 1 1 13 d 0.66

our composition
†

12 4 4 1 5 3 1 30 l+c 2.03

6-hole BCC
(12)

4 2 3 0 12 5 1 27 l 7.23

†
Our modification/design

(1)
[Weber [n. d.]]

(2)
[Chen et al. 2019]

(3)
[Jenett et al. 2020]

(4)
[Deshpande et al. 2001]

(5)
[Hsueh et al. 2019]

(6)
[Frenzel et al. 2017]

(7)
[Muhammad and Lim 2021]

(8)
[Lu et al. 2017]

(9)
[Wu et al. 2019]

(10)
[Mizzi et al. 2018]

(11)
[Han et al. 2015]

(12)
[Babaee et al. 2013]

Table 5. User study results. For each of the 6 modeling tasks, we show two randomly selected user-created structures (all structures are shown in the
Supplement). The construction time and number of nodes used for each structure are reported as the “avg (min, max)” measured across all 10 participants.

Name Assembled 2 Non-Manifold Wei’s genus 4 Hao Chen’s 𝑜Δ/𝑡Δ FCC Combo
Type Straight & curved beams Direct surface Conjugate TPMS Mixed Minimal TPMS Solid Bulk All Classes

Results

Nodes 16 (15, 18) 14.4 (13, 20) 14.1 (14, 15) 17.1 (16, 19) 18.9 (15, 21) 38.2 (31, 52)

𝑡 [min] 14.9 (10, 19) 14.2 (7, 28) 13.2 (5, 22) 26.4 (12, 42) 17.1 (11, 22) 21.8 (16, 33)

The homogenization of an orthotropic material yields a 6× 6 matrix

𝐶 of the following form:

𝐶 =

𝐶11 𝐶12 𝐶13 0 0 0

𝐶21 𝐶22 𝐶23 0 0 0

𝐶31 𝐶32 𝐶33 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶55 0

0 0 0 0 0 𝐶66

. (8)

After inverting 𝐶 , we can extract standard material properties such

as 𝐸𝑖 , which is the Young’s modulus along axis 𝑖 ∈ {𝑥,𝑦, 𝑧}. Fig-
ure 11(a) plots each structure’s density against its average Young’s

modulus, 𝐸avg = (𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧)/3. Even from our undirected topo-

logical exploration, we are able to cover a broad region of this space

and begin observing trends between the classes. For example, conju-

gate shellulars generally yield the best 𝐸avg for a given density, but

direct shellulars exhibit broader property coverage due to their less-

constrained skeleton space. Furthermore, our coverage surpasses

that of the established structures for a given density.

To examine the role of spatially-varying thickness, we generate

four additional variations of the truss structures: increasing each

beam’s uniform thickness to 0.04 or 0.08, and increasing each beam’s

center thickness to 0.04 or 0.08 (to mimic the well-known Penta-

mode [Milton and Cherkaev 1995]). As shown in Figure 11(b), the

ratio between 𝐸avg and density remains near constant as thickness

increases. We observed a similar relationship for shellulars.

Finally, we examine the𝐶 matrices for our asymmetric structures,

which can exhibit non-zero entries in the off-diagonal blocks. These

, Vol. 1, No. 1, Article . Publication date: June 2023.

Procedural Metamaterials • 15

Fig. 9. Randomly generated minimal surfaces. Using our simple random exploration method over boundary loops, we have generated a large set of
minimal surfaces, including both novel structures and classic TPMS such as the Schwarz P structure (bottom row, third column).

Fig. 10. Fabricated structures.We fabricated 4 structures based on our
conjugate surface (a,b), direct surface (c), and truss-based (d) methods. We
selected (a), (b), and (d) to maximize the ratio between Young’s Modulus
and density, subject to the constraints of the 3D printer (≥ 1mm thickness).
Structure (c) is the result from Figure 11(c, bottom). The middle photo shows
the scale of our 3D-printed structures relative to the hand of an adult male.

entries yield interesting anisotropic material behaviors. Figure 11(c)

shows this effect for two of our most extreme structures.

8.2.2 Phononic Bandgap. We evaluate the bandgap for half of our

randomly-generated symmetric shellular structures, and select the

structure with the largest gap (Figure 12, top). We also reproduce

the state-of-the-art structure proposed by Muhammad and Lim

[2021] (Figure 12, bottom) and compare the dispersion curves for

each. The latter design is far superior, which indicates that we are

unlikely to solve this task via uninformed exploration in a subset

of the design space (e.g., only shellular structures). However, our

concise representation of the state-of-the-art design suggests that

an intelligent search over our full procedural graph space could

reveal structures with comparable or even superior bandgaps.

9 LIMITATIONS & FUTURE WORK
Although our approach covers a wide variety of metamaterial ar-

chitectures, it has several limitations. For example, our thickening

operations do not necessarily preserve separation between features,

which may cause issues for e.g. interpenetrating lattices [White et al.

2021] or kirigami structures with cuts. Our thickening operations

are also presently limited to simple sphere- or normal-extrusion

with spatially-varying thickness. We could provide more flexibility

via other solidification routines, such as user-defined cross-section

profiles for generating triangular prisms or I-beams. To mitigate

areas of high stress concentration, we could also introduce blend-

ing methods that control the shape of junctions between abutting

skeletal elements. The convex-hull-restricted blending approach

[Colli Tozoni et al. 2020; Panetta et al. 2017] offers one such solution

for beam structures, which could be integrated into our system by

adding blending parameters on the vertices of line skeletons. How-

ever, this approach would need to be generalized to accommodate

surfaces, solid bulks, and subtractive Boolean operations, as well as

skeleton intersections that occur away from user-defined vertices.

Our work is also presently limited to a single cell of a regular

metamaterial residing in a unit cube. We could expand this scope

by exploring additional tilable cells such as hexagonal prisms or

rhombic dodecahedral honeycombs. We could also integrate rou-

tines for stochastic porous structures like foams, or for partitioning

our graph into explicit, reusable subgraphs that could facilitate the

design of complex hybrid structures or multi-scale designs [Rao

et al. 2019; Zhang et al. 2021]. Finally, future work could consider

ways to smoothly connect a set of distinct cells, in order to facilitate

the construction of larger volumes with e.g. functional grading [Al-

Ketan and Abu Al-Rub 2021; Hu et al. 2022b] or smooth transitions

between structures of different classes (e.g., trusses to shells).

In a mathematical vein, we could also explore the limits of our

CSCM approach w.r.t. the period problem discussed in Sec 4.1. If

robust, our approach could facilitate the discovery of new exam-

ples or perhaps even a general solution for the problem of handle

insertion. Alternatively, we could incorporate e.g. minimal twin
surfaces [Chen 2019] or Willmore surfaces [Willmore 1965], which

, Vol. 1, No. 1, Article . Publication date: June 2023.

16 • Makatura and Wang, et al.

Fig. 11. Stiffness Tensor Experiments. Our preliminary studies suggest broad coverage of the stiffness tensor space. All subfigures assume a uniform baseline
thickness of 0.02 (indicated by “x1”). (a) We plot density vs. average Young’s modulus (𝐸𝑎𝑣𝑔) for structures in 5 classes: “truss-random”, “direct-random”, and
“conjugate-random” are from our random exploration strategies; “truss-tet-topologies” are the topologies from Panetta et al. [2015]; and “existing” are other
structures from literature. We show the convex hull of each class (except “existing”) along with structures that exhibit higher 𝐸𝑎𝑣𝑔 and/or lower density than
comparable known structures. (b)We explore the effect of thickening on density vs. 𝐸𝑎𝑣𝑔 . Structures marked “x2”/“x4” are uniformly 2×/4× the baseline
thickness; for “z2”/“z4”, the beam centers are 2×/4× the baseline. As thickness increases, both density and 𝐸𝑎𝑣𝑔 increase in a near-linear relationship. (c) Our
asymmetric direct surfaces exhibit strong anisotropy due to their non-zero entries in all 21 DOFs of𝐶 . The largest absolute entry in the off-/on-diagonal 3 × 3

block of𝐶 was exhibited by the top/bottom structure, respectively. The material spheres show their omni-directional strain-stress relationship, where color
and distance to the center show the strain response to uniform stress in that direction.

Fig. 12. Selected Phononic Bandgaps.We show the dispersion curves for
two structures: (Top) the randomly-generated shellular with the largest
predicted bandgap, and (Bottom) the state-of-the-art metamaterial for
phononic bandgap [Muhammad and Lim 2021]. Each dispersion curve plot
shows normalized frequency values on the 𝑦-axis; the 𝑥-axis represents
wave vectors along the irreducible first Brillouin zone for cubic-symmetric
structures. Each vertical slice of the plot shows the structure’s eigenmodes
under a particular wave vector; thus, any horizontal band without curves
(gray) indicates a bandgap – i.e., a frequency range with no mode of trans-
mission. Wide gaps in low frequency ranges are the most desirable.

are a superset of minimal surfaces with constant mean curvature.

In conjunction with volume-preserving metrics, this could lead to a

host of interesting new structures.

We also look forward to devising optimization schemes over our

representation to permit the automatic discovery and interactive

user-in-the-loop design of metamaterial structures with extremal

properties. Toward this goal, our system would benefit from the de-

velopment of a robust, principled GUI and expanded simulation capa-

bilities, including nodes for e.g. non-linear simulators, stress-strain

curves, and tetrahedralization. It would also be interesting to ex-

plore whether we could perform analysis and/or property prediction

directly on our graph representation, to permit faster exploration

and optimization techniques free of meshing- or simulation-related

bottlenecks and sensitivities.

10 CONCLUSION
We have presented a simple, compact procedural graph for the

construction of a wide range of formerly disparate cellular meta-

material architectures: trusses, solid bulks, and shells, including

TPMS-based structures. Within this, we have also developed a prac-

tical, easy-to-use implementation of a state-of-the-art construction

method for TPMS, and characterized a simple, unified design space

for a wide range of thickness-annotated metamaterial skeletons. We

have demonstrated our representation’s accuracy and generality by

expressing a large collection of structures found in mechanical engi-

neering and material science literature using only a few graph nodes.

We have also verified our representation’s intuitiveness through an

extensive user study. Finally, we have demonstrated our method’s

potential w.r.t. a number of exciting applications and future works

by generating thousands of structures with considerable diversity

in terms of both visual structure and material properties.

ACKNOWLEDGMENTS
The authors would like to thank Mina Konaković Luković and

Michael Foshey for their early contributions to this project; David

, Vol. 1, No. 1, Article . Publication date: June 2023.

Procedural Metamaterials • 17

Palmer and Paul Zhang for their insightful discussions about mini-

mal surfaces and the CSCM; Julian Panetta for providing the Elastic

Textures code; and Hannes Hergeth for his feedback and support.

We also thank our user study participants and anonymous reviewers.

This material is based upon work supported by the National Science

Foundation (NSF) Graduate Research Fellowship under Grant No.

2141064; the MIT Morningside Academy for Design Fellowship;

the Defense Advanced Research Projects Agency (DARPA) Grant

No. FA8750-20-C-0075; the ERC Consolidator Grant No. 101045083,

"CoDiNA: Computational Discovery of Numerical Algorithms for

Animation and Simulation of Natural Phenomena"; and the NewSat

project, which is co-funded by the Operational Program for Compet-

itiveness and Internationalisation (COMPETE2020), Portugal 2020,

the European Regional Development Fund (ERDF), and the Por-

tuguese Foundation for Science and Technology (FTC) under the

MIT Portugal program.

REFERENCES
Mostafa Akbari, Armin Mirabolghasemi, Hamid Akbarzadeh, and Masoud Akbarzadeh.

2020. Geometry-Based Structural Form-Finding to Design Architected Cellular

Solids. In Symposium on Computational Fabrication (Virtual Event, USA) (SCF ’20).
Association for Computing Machinery, New York, NY, USA.

Mostafa Akbari, Armin Mirabolghasemi, Mohammad Bolhassani, Abdolhamid Ak-

barzadeh, and Masoud Akbarzadeh. 2022. Strut-Based Cellular to Shellular Funicular

Materials. Advanced Functional Materials 32, 14 (2022).
Oraib Al-Ketan and Rashid K. Abu Al-Rub. 2021. MSLattice: A free software for

generating uniform and graded lattices based on triply periodic minimal surfaces.

Material Design & Processing Communications 3, 6 (2021).
Brian Amberg, Sami Romdhani, and Thomas Vetter. 2007. Optimal Step Nonrigid ICP

Algorithms for Surface Registration. In 2007 IEEE Conference on Computer Vision
and Pattern Recognition.

Rita Ambu and Anna Eva Morabito. 2019. Modeling, Assessment, and Design of Porous

Cells Based on Schwartz Primitive Surface for Bone Scaffolds. The Scientific World
Journal 2019 (2019).

Michael F. Ashby. 2006. The properties of foams and lattices. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, 1838
(2006).

Arash Ataee, Yuncang Li, Darren Fraser, Guangsheng Song, and Cuie Wen. 2018.

Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting

(EBM) for bone implant applications. Materials & Design 137 (2018).

Reza Attarzadeh, Seyed-Hosein Attarzadeh-Niaki, and Christophe Duwig. 2022. Multi-

objective optimization of TPMS-based heat exchangers for low-temperature waste

heat recovery. Applied Thermal Engineering 212 (2022).

Sahab Babaee, Jongmin Shim, James C Weaver, Elizabeth R Chen, Nikita Patel, and

Katia Bertoldi. 2013. 3D soft metamaterials with negative Poisson’s ratio. Advanced
Materials 25, 36 (2013).

Andreas Bærentzen and Eva Rotenberg. 2021. Skeletonization via Local Separators.

ACM Trans. Graph. 40, 5 (sep 2021).

Jan-Hendrik Bastek, Siddhant Kumar, Bastian Telgen, Raphaël N. Glaesener, and Den-

nisM. Kochmann. 2022. Inverting the structure–propertymap of truss metamaterials

by deep learning. Proceedings of the National Academy of Sciences 119, 1 (2022).
Katia Bertoldi, Vincenzo Vitelli, JohanChristensen, andMartin VanHecke. 2017. Flexible

mechanical metamaterials. Nature Reviews Materials 2, 11 (2017).
Harry Blum. 1967. A transformation for extracting new descriptors of shape. Models

for the perception of speech and visual form 19, 5 (1967).

Pedro Boechat, Mark Dokter, Michael Kenzel, Hans-Peter Seidel, Dieter Schmalstieg,

and Markus Steinberger. 2016. Representing and Scheduling Procedural Generation

Using Operator Graphs. 35, 6 (dec 2016).

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.

Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4 (2014).

Kenneth A. Brakke. 1992. The Surface Evolver. Experimental Mathematics 1, 2 (1992).
Yu-Chin Chan, Faez Ahmed, Liwei Wang, and Wei Chen. 2020. METASET: Exploring

Shape and Property Spaces for Data-Driven Metamaterials Design. Journal of
Mechanical Design 143, 3 (2020).

Desai Chen, Mélina Skouras, Bo Zhu, and Wojciech Matusik. 2018. Computational

discovery of extremal microstructure families. Science Advances 4, 1 (2018).
Hao Chen. 2019. Minimal Twin Surfaces. Experimental Mathematics 28, 4 (2019).
Hao Chen and Matthias Weber. 2021. A new deformation family of Schwarz’ D surface.

Trans. Amer. Math. Soc. 374, 4 (2021).

Zeyao Chen, Yi Min Xie, Xian Wu, Zhe Wang, Qing Li, and Shiwei Zhou. 2019. On

hybrid cellular materials based on triply periodic minimal surfaces with extreme

mechanical properties. Materials & Design 183 (2019).

Davi Colli Tozoni, Jérémie Dumas, Zhongshi Jiang, Julian Panetta, Daniele Panozzo, and

Denis Zorin. 2020. A Low-Parametric Rhombic Microstructure Family for Irregular

Lattices. ACM Trans. Graph. 39, 4 (July 2020).

Robert L. Cook. 1984. Shade Trees. SIGGRAPH Comput. Graph. 18, 3 (jan 1984).

Vikram S. Deshpande, Norman A. Fleck, andMichael F. Ashby. 2001. Effective properties

of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49,
8 (2001).

Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel Piker,

and Mark Pauly. 2015. ShapeOp – A Robust and Extensible Geometric Modelling

Paradigm. Design Modelling Symposium.

Gerhard Dziuk. 1990. An algorithm for evolutionary surfaces. Numer. Math. 58, 1
(1990).

Zhaohui Fan, Renjing Gao, and Shutian Liu. 2022. Thermal conductivity enhancement

and thermal saturation elimination designs of battery thermal management system

for phase change materials based on triply periodic minimal surface. Energy 259

(2022).

Jiawei Feng, Bo Liu, Zhiwei Lin, and Jianzhong Fu. 2021. Isotropic porous structure

design methods based on triply periodic minimal surfaces. Materials & Design 210

(2021).

Tobias Frenzel, Muamer Kadic, and Martin Wegener. 2017. Three-dimensional mechan-

ical metamaterials with a twist. Science 358, 6366 (2017).
Darren Matthew Garbuz. 2010. Isoperimetric Properties of Some Genus 3 Triply Peri-

odic Minimal Surfaces Embedded in Euclidean Space. Master’s thesis. Edwardsville,

Illinois.

Lorna J. Gibson, Michael F. Ashby, and Brendan A. Harley. 2010. Cellular materials in
nature and medicine. Cambridge University Press.

Aldair E. Gongora, Siddharth Mysore, Beichen Li, Wan Shou, Wojciech Matusik, Elise F.

Morgan, Keith A. Brown, and Emily Whiting. 2021. Designing Composites with

Target Effective Young’s Modulus Using Reinforcement Learning. In Symposium on
Computational Fabrication (Virtual Event, USA) (SCF ’21). Association for Computing

Machinery, New York, NY, USA.

Jeremy Gray and Mario Micallef. 2007. The work of Jesse Douglas on Minimal Surfaces.

Seung Chul Han, Jeong Woo Lee, and Kiju Kang. 2015. A new type of low density

material: Shellular. Advanced Materials 27, 37 (2015).
Jenny Harrison and Harrison Pugh. 2016. Plateau’s Problem. Springer International

Publishing, Cham.

Meng-Ting Hsieh and Lorenzo Valdevit. 2020. Minisurf – A minimal surface generator

for finite element modeling and additive manufacturing. Software Impacts 6 (2020).
Chun-Hway Hsueh, Siegfried Schmauder, Chuin-Shan Chen, Krishan Kumar Chawla,

Nikhilesh Chawla, Weiqiu Chen, Yutaka Kagawa, et al. 2019. Handbook of mechanics
of materials. Springer.

Jiangbei Hu, Shengfa Wang, Baojun Li, Fengqi Li, Zhongxuan Luo, and Ligang Liu.

2022b. Efficient Representation and Optimization for TPMS-Based Porous Structures.

IEEE Transactions on Visualization and Computer Graphics 28, 7 (jul 2022).
Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022a.

An Inverse Procedural Modeling Pipeline for SVBRDF Maps. ACM Trans. Graph. 41,
2 (jan 2022).

Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack

Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016. Metamaterial

Mechanisms. In Proceedings of the 29th Annual Symposium on User Interface Software
and Technology (Tokyo, Japan) (UIST ’16). Association for Computing Machinery,

New York, NY, USA.

Alexandra Ion, David Lindlbauer, Philipp Herholz, Marc Alexa, and Patrick Baudisch.

2019. Understanding Metamaterial Mechanisms. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI
’19). Association for Computing Machinery, New York, NY, USA.

Alexandra Ion, Ludwig Wall, Robert Kovacs, and Patrick Baudisch. 2017. Digital

Mechanical Metamaterials. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for

Computing Machinery, New York, NY, USA.

Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic

Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4 (2011).
Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing

library. https://libigl.github.io/.

Benjamin Jenett, Christopher Cameron, Filippos Tourlomousis, Alfonso Parra Rubio,

Megan Ochalek, and Neil Gershenfeld. 2020. Discretely assembled mechanical

metamaterials. Science Advances 6, 47 (2020).
Alistair Jones, Martin Leary, Stuart Bateman, and Mark Easton. 2021. TPMS Designer: A

tool for generating and analyzing triply periodic minimal surfaces. Software Impacts
10 (2021).

Hermann Karcher. 1989. The triply periodic minimal surfaces of Alan Schoen and their

constant mean curvature companions. Manuscripta Mathematica 64 (1989). Issue 3.

, Vol. 1, No. 1, Article . Publication date: June 2023.

18 • Makatura and Wang, et al.

Hermann Karcher and Konrad Polthier. 1996. Construction of Triply Periodic Minimal

Surfaces. Philosophical Transactions: Mathematical, Physical and Engineering Sciences
354, 1715 (1996).

Saeed Khaleghi, Fayyaz N. Dehnavi, Mostafa Baghani, Masoud Safdari, Kui Wang, and

Majid Baniassadi. 2021. On the directional elastic modulus of the TPMS structures

and a novel hybridization method to control anisotropy. Materials & Design 210

(2021).

Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark

Pauly. 2016. Beyond Developable: Computational Design and Fabrication with

Auxetic Materials. ACM Trans. Graph. 35, 4 (2016).
Vojtěch Krs, Radomír Měch, Mathieu Gaillard, Nathan Carr, and Bedrich Benes. 2021.

PICO: Procedural Iterative Constrained Optimizer for Geometric Modeling. IEEE
Transactions on Visualization and Computer Graphics 27, 10 (2021).

Siddhant Kumar, Stephanie Tan, Li Zheng, and Dennis M. Kochmann. 2020. Inverse-

designed spinodoid metamaterials. npj Computational Materials 6, 1 (2020).
H. Blaine Lawson. 1970. Complete Minimal Surfaces in S3. Annals of Mathematics 92, 3

(1970).

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J Gortler. 2008. A local/global

approach to mesh parameterization. In Computer Graphics Forum, Vol. 27.

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution 3D

surface construction algorithm. ACM siggraph computer graphics 21, 4 (1987).
Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye,

Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-Last: Strength to

Weight 3D Printed Objects. ACM Trans. Graph. 33, 4 (jul 2014).
Yan Lu, Yang Yang, James K. Guest, and Ankit Srivastava. 2017. 3-D phononic crystals

with ultra-wide band gaps. Scientific Reports 7, 1 (2017).
Jonàs Martínez, Mélina Skouras, Christian Schumacher, Samuel Hornus, Sylvain Lefeb-

vre, and Bernhard Thomaszewski. 2019. Star-Shaped Metrics for Mechanical Meta-

material Design. ACM Trans. Graph. 38, 4 (2019).
Ian Maskery, Luke A. Parry, Daniel Padrão, Richard J.M. Hague, and Ian A. Ashcroft.

2022. FLatt Pack: A research-focussed lattice design program. Additive Manufactur-
ing 49 (2022).

William H. Meeks, III. 1975. The Geometry and the Conformal Structure of Triply Periodic
Minimal Surfaces in R3

. Ph. D. Dissertation. Berkeley, CA.

Élie Michel and Tamy Boubekeur. 2021. DAG Amendment for Inverse Control of

Parametric Shapes. ACM Trans. Graph. 40, 4 (jul 2021).
GraemeWMilton and Andrej V Cherkaev. 1995. Which elasticity tensors are realizable?

(1995).

Luke Mizzi, E.M. Mahdi, Kirill Titov, Ruben Gatt, Daphne Attard, Kenneth E Evans,

Joseph N Grima, and Jin-Chong Tan. 2018. Mechanical metamaterials with star-

shaped pores exhibiting negative and zero Poisson’s ratio. Materials & Design 146

(2018).

Muhammad and C. W. Lim. 2021. Phononic metastructures with ultrawide low fre-

quency three-dimensional bandgaps as broadband low frequency filter. Scientific
Reports 11, 1 (2021).

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.

Meshless Deformations Based on Shape Matching. ACM Trans. Graph. 24, 3 (2005).
John A. Nelder and Roger Mead. 1965. A Simplex Method for Function Minimization.

Comput. J. 7, 4 (1965).
Ban Dang Nguyen, Jeong Shik Cho, and Kiju Kang. 2016. Optimal design of “Shellular”,

a micro-architectured material with ultralow density. Materials & Design 95 (2016).

Jifei Ou, Zhao Ma, Jannik Peters, Sen Dai, Nikolaos Vlavianos, and Hiroshi Ishii. 2018.

KinetiX - designing auxetic-inspired deformable material structures. Computers &
Graphics 75 (2018).

Mariam Ouda, Oraib Al-Ketan, Nurshaun Sreedhar, Mohamed I. Hasan Ali, Rashid K.

AbuAl-Rub, SeungkwanHong, andHassanA. Arafat. 2020. Novel staticmixers based

on triply periodic minimal surface (TPMS) architectures. Journal of Environmental
Chemical Engineering 8, 5 (2020).

Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case Stress Relief for

Microstructures. ACM Trans. Graph. 36, 4 (July 2017).

Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis

Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. 34, 4 (July
2015).

Ken Perlin. 1985. An Image Synthesizer. SIGGRAPH Comput. Graph. 19, 3 (jul 1985).
Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and

their conjugates. Experimental Mathematics 2, 1 (1993).
Przemyslaw Prusinkiewicz and Aristid Lindenmayer. 2004. The Algorithmic Beauty of

Plants. Electronic Edition.
Zhao Qin, Gang Seob Jung, Min Jeong Kang, andMarkus J. Buehler. 2017. Themechanics

and design of a lightweight three-dimensional graphene assembly. Science Advances
3, 1 (2017).

Mats Åberg and Peter Gudmundson. 1997. The usage of standard finite element codes

for computation of dispersion relations in materials with periodic microstructure.

The Journal of the Acoustical Society of America 102, 4 (1997).
Cong Rao, Fan Xu, Lihao Tian, and Lin Lu. 2019. Bi-Scale Porous Structures. In Pro-

ceedings of the SMI 2019 Fabrication & Sculpting Event (FASE).

Ulrich Reitebuch, Martin Skrodzki, and Konrad Polthier. 2019. Discrete Gyroid Surface.

In Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education,
Culture. Tessellations Publishing, Phoenix, Arizona, 461–464.

Tobias A. Schaedler andWilliam B. Carter. 2016. Architected Cellular Materials. Annual
Review of Materials Research 46, 1 (2016).

Olaf Schenk and Klaus Gärtner. 2004. Solving unsymmetric sparse systems of linear

equations with PARDISO. Future Generation Computer Systems 20, 3 (2004).
Alan H. Schoen. 2008. On the Graph (10-3)-a. Notices of the AMS 55, 6 (2008).
Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and

Markus Gross. 2015. Microstructures to Control Elasticity in 3D Printing. 34, 4

(2015).

Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir Mech,

and Wojciech Matusik. 2020. Match: differentiable material graphs for procedural

material capture. ACM Trans. Graph. 39, 6 (nov 2020), 15 pages.
Madlaina Signer, Alexandra Ion, and Olga Sorkine-Hornung. 2021. Developable Meta-

materials: Mass-Fabricable Metamaterials by Laser-Cutting Elastic Structures. In

Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY,

USA.

Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A Survey on

Procedural Modelling for Virtual Worlds. Comput. Graph. Forum 33, 6 (sep 2014).

Alessandro Spadoni, Reinhard Höhler, Sylvie Cohen-Addad, and Vladimir Dorodnitsyn.

2014. Closed-cell crystalline foams: Self-assembling, resonant metamaterials. The
Journal of the Acoustical Society of America 135, 4 (2014).

James Utama Surjadi, Libo Gao, Huifeng Du, Xiang Li, Xiang Xiong, Nicholas Xu-

anlai Fang, and Yang Lu. 2019. Mechanical metamaterials and their engineering

applications. Advanced Engineering Materials 21, 3 (2019).
Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and Hao Zhang. 2012. Mean

Curvature Skeletons. Computer Graphics Forum 31, 5 (2012).

Andrea Tagliasacchi, Thomas Delame,Michela Spagnuolo, Nina Amenta, and Alexandru

Telea. 2016. 3D Skeletons: A State-of-the-Art Report. Computer Graphics Forum 35,

2 (2016).

Lihao Tian, Lin Lu,Weikai Chen, Yang Xia, Charlie C. L.Wang, andWenpingWang. 2020.

Organic Open-Cell Porous Structure Modeling. In Symposium on Computational
Fabrication (Virtual Event, USA) (SCF ’20). Association for Computing Machinery,

New York, NY, USA.

StephanieWang and Albert Chern. 2021. Computing Minimal Surfaces with Differential

Forms. ACM Trans. Graph. 40, 4 (2021).
Matthias Weber. [n. d.]. Triply Periodic surfaces. https://minimalsurfaces.blog/home/

repository/triply-periodic/ (accessed 02-22-2023).

MatthiasWeber. 2018a. Mathematica notebook for Gyroid. Minimal Surfaces Repository,

available at https://minimalsurfaces.blog/home/repository/triply-periodic/gyroid/

(accessed 02-22-2023).

Matthias Weber. 2018b. Mathematica notebook for Neovius Surface. Minimal Sur-

faces Repository, available at https://minimalsurfaces.blog/home/repository/triply-

periodic/neovius-surface/ (accessed 02-22-2023).

Matthias Weber. 2018c. Mathematica notebook for Schoen I-WP. Minimal Sur-

faces Repository, available at https://minimalsurfaces.blog/home/repository/triply-

periodic/schoen-i-wp/ (accessed 02-22-2023).

Matthias Weber. 2018d. Mathematica notebook for Schwarz P-Surface. Minimal

Surfaces Repository, available at https://minimalsurfaces.blog/home/repository/

triply-periodic/schwarz-p-surface/ (accessed 02-22-2023).

Benjamin C. White, Anthony Garland, Ryan Alberdi, and Brad L. Boyce. 2021. Interpen-

etrating lattices with enhanced mechanical functionality. Additive Manufacturing
38 (2021).

Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural Modeling of

Structurally-Sound Masonry Buildings. ACM Trans. Graph. 28, 5 (dec 2009).
Thomas J Willmore. 1965. Note on embedded surfaces. An. Sti. Univ.“Al. I. Cuza” Iasi

Sect. I a Mat.(NS) B 11, 493-496 (1965).

Wenwang Wu, Wenxia Hu, Guian Qian, Haitao Liao, Xiaoying Xu, and Filippo Berto.

2019. Mechanical design and multifunctional applications of chiral mechanical

metamaterials: A review. Materials & design 180 (2019).

Chunze Yan, Liang Hao, Lei Yang, Ahmed Yussuf Hussein, Philippe G. Young, Zhaoqing

Li, and Yan Li. 2021. Triply Periodic Minimal Surface Lattices Additively Manufactured
by Selective Laser Melting. Elsevier Science.

Xin Yan, Cong Rao, Lin Lu, Andrei Sharf, Haisen Zhao, and Baoquan Chen. 2020. Strong

3D Printing by TPMS Injection. IEEE Transactions on Visualization and Computer
Graphics 26, 10 (2020).

Lei Zhang, Zhiheng Hu, Michael Yu Wang, and Stefanie Feih. 2021. Hierarchical

sheet triply periodic minimal surface lattices: Design, geometric and mechanical

performance. Materials & Design 209 (2021).

Frank W. Zok, Ryan M. Latture, and Matthew R. Begley. 2016. Periodic truss structures.

Journal of the Mechanics and Physics of Solids 96 (2016).

, Vol. 1, No. 1, Article . Publication date: June 2023.

https://minimalsurfaces.blog/home/repository/triply-periodic/
https://minimalsurfaces.blog/home/repository/triply-periodic/
https://minimalsurfaces.blog/home/repository/triply-periodic/gyroid/
https://minimalsurfaces.blog/home/repository/triply-periodic/neovius-surface/
https://minimalsurfaces.blog/home/repository/triply-periodic/neovius-surface/
https://minimalsurfaces.blog/home/repository/triply-periodic/schoen-i-wp/
https://minimalsurfaces.blog/home/repository/triply-periodic/schoen-i-wp/
https://minimalsurfaces.blog/home/repository/triply-periodic/schwarz-p-surface/
https://minimalsurfaces.blog/home/repository/triply-periodic/schwarz-p-surface/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Cellular Architectures
	2.2 Relevant Modeling Methods

	3 Overview
	3.1 Skeletal Design Space
	3.2 Unified Procedural Graph
	3.3 User Design Process
	3.4 Outline

	4 Conjugate Surface Construction
	4.1 Background & Overview
	4.2 Our Edge Length Optimization

	5 Complete Skeletal Design Space
	5.1 Surfaces
	5.2 Lines
	5.3 Spatially-Varying Thickness

	6 Procedural Graph for Metamaterials
	6.1 Vertex and Edge Chain Nodes
	6.2 Line Nodes
	6.3 Surface Nodes
	6.4 Mirror, Transform, and Group Nodes
	6.5 Object, CSG Boolean, and Voxel nodes
	6.6 Metamaterial Property Nodes

	7 Results
	7.1 Conjugate Surface Construction
	7.2 Representing Established Cellular Structures
	7.3 User Study

	8 Applications
	8.1 Automated Structure Generation
	8.2 Material Properties

	9 Limitations & Future Work
	10 Conclusion
	Acknowledgments
	References

