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Computational discovery of extremal
microstructure families
Desai Chen,* Mélina Skouras, Bo Zhu, Wojciech Matusik

Modern fabrication techniques, such as additivemanufacturing, can be used to creatematerials with complex custom
internal structures. These engineered materials exhibit a much broader range of bulk properties than their base
materials and are typically referred to asmetamaterials ormicrostructures. Althoughmetamaterialswith extraordinary
properties havemany applications, designing them is very difficult and is generally done by hand.We propose a com-
putational approach to discover families of microstructures with extremal macroscale properties automatically. Using
efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically
realizable microstructures. Our system then clusters microstructures with common topologies into families. Parame-
terized templates are eventually extracted from families to generate new microstructure designs. We demonstrate
these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure
families with extremal elasticmaterial properties. Our study opens theway for the completely automated discovery of
extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and
magnetic properties.
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INTRODUCTION
Microstructures can exhibit remarkable physical properties that extend
beyond the properties of their constituent materials. Many micro-
structure types have been developed to demonstrate applications in me-
chanics (1–6), acoustics (7, 8), and electromagnetics (9–11). These
microstructures are typically designed by domain experts using time-
and labor-intensive manual processes. These designs are often program-
mable in the sense that they have a small number of control parameters
for generating a family of geometries. A given microstructure family can
be tested by performing simulations or experimental measurements on
samples with different sets of parameter values. This testing process
allows the mapping of the control parameters to physical properties,
which in turn helps to reveal the underlying design principles that explain
the behavior of the structures. In practical applications, thismapping also
enables the selection of a family member that has a desired trade-off be-
tween physical properties, allowing it to achieve some target performance
objective (12). Unfortunately, it is rare for manually designed micro-
structure families to reach extremal material properties, for the reason
that the space of possible microstructure designs is combinatorial and
therefore impossible to explore exhaustively. One standard approach to
bypass this design challenge is to use computational methods, such as
topology optimization (13–15), with a computer simulation in their inner
loop to find amicrostructurewith a specified trade-off of physical proper-
ties. However, although topology optimization is a powerful tool for
finding individual structures with target material parameters, construct-
ing parametric models from these optimized structures requires further
expertise andmanual design effort (16). In contrast to previous work, we
present the first computational method that automatically explores the
space of microstructure designs and generates parametricmicrostructure
representations, and we apply this technique to the discovery of parame-
tric families optimized for competing properties.

Our methodology is designed to be modular, allowing users to
choose suitable components for different physical properties. Here,
we apply our method to the design of mechanical metamaterials
(17). Specifically, we ask our algorithm to construct templates for a
particularly interesting type of mechanical microstructure—auxetic
materials—which have a negative Poisson’s ratio. These materials have
the unusual property of becoming laterally thinner under axial com-
pression. Two-dimensional (2D) auxetic structures are well understood
because of their relatively simple shape and geometric features, with
common classes including reentrant structures (13, 18), chiral structures
(19, 20), and rotating mechanisms (21–23). Unfortunately, generalizing
existing 2D structures to 3D is challenging because a simple arrange-
ment of 2Dmechanisms often results in orthotropic or other anisotrop-
ic structures with low shear resistance. These structures will easily shear
when the load is not well aligned with the auxetic direction. In addition,
because Poisson’s ratio for orthotropic structures is unbounded,
orthotropic auxetic structures are much easier to find than isotropic
ones (24). In a pioneeringwork, Lakes (18) fabricated and tested the first
isotropic 3D auxetic structure. Lakes’ work proved the feasibility of 3D
auxetic structures but did not aim to provide anymeans to control elas-
tic material parameters such as Young’s modulus, Poisson’s ratio, and
shear modulus. Designing manufacturable 3D auxetic structures with
desired elastic parameters remains a complex task, and only a handful
of 3D designs have been fabricated and measured (24, 25). Our results
show that it is possible to automatically discover common design
patterns of auxetic structures that can be parameterized by a small set
of control parameters.Wedemonstrate this capability by presenting five
discovered auxetic families that cover a wider range of material param-
eters, which have been shown in previous works.

At a high level, our system takes a set of base materials as input and
outputs parametric microstructure templates. By turning voxel-based
microstructure representations into parametric shapes, structures of ar-
bitrary resolution can be obtained. This allows the generation of micro-
structures with a resolution adapted to the chosen fabrication method.
These newly generated structures achieve optimal trade-offs of physical
properties. Instead of finding individual optimal structures, we aim
to understand the common mechanisms that make the structures
work, which allows us to come up with new structures using these very
mechanisms. We propose a four-step software pipeline to find these
patterns in a data-driven approach (Fig. 1). First, we generate a database
ofmicrostructures covering the range of achievablematerial parameters.
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We call the range of realizablematerial parameters thematerial property
gamut. With the gamut at hand, we then select a subset of microstruc-
tures near the gamut boundary that share similar material properties.
Our algorithm analyzes the geometric similarity among these structures.
Because many distinct structures can achieve similar properties, we
separate them into families based on their geometric features. Once
the families are separated, our algorithm extracts their topological
structures to form templates. Thus, these templates reveal the underlying
common structure of the microstructures within each family. They can
also be used to generate new structures by varying a small number of
their parameters. To create new structures in the vicinity of the material
gamut boundary (that is, with nearly extremal properties), we compute
directions along which to vary the template parameters using a regres-
sion method. The final output of our system is a set of templates
controlled by reduced parameters for generating new resolution-
independent structures along the gamut boundary.

The details of the four steps of our discovery pipeline are presented
and discussed inwhat follows. The first step of the pipeline estimates the
material property gamut given a set of basematerials.We used two base
materials in our experiments: a stiff material and a soft or voidmaterial.
This step computes a set of microstructure samples that covers asmuch
of the material property gamut as possible within our computational
budget. We define a microstructure as a set of material assignments
in a regular grid. This definition is more general than alternative defini-
tions such as networks of trusses or geometries generated from a set of
analytic functions. However, our definition also brings new challenges,
because a broader design space means many more designs to explore.
For example, if we use two base materials and a 64 × 64 × 64 grid, then
the number of possible material combinations is 2 to the power of 643.
Ideally, this step would try all possible combinations, remove the ones
unsuitable for manufacturing, and compute the gamut achieved by the
remaining structures. In practice, with a limited computational budget,
we need an efficient sampling algorithm that allocates more computing
resource to the promising structures near the gamut boundary. To this
end, we rely on a sampling algorithm that alternates between continu-
ous optimization and discrete stochastic search to progressively expand
the gamut (26). Both steps randomly pick structures near the gamut
boundary as promising initial guesses. The continuous optimization
stage pushes structures past the explored gamut boundary along gradi-
ent directions, whereas the discrete stochastic stage escapes local mini-
ma by making jumps without following the gradient.

Our study onmechanical microstructures uses a topology optimiza-
tion formulation inspired by the work of Andreassen et al. (24) for the
Chen et al., Sci. Adv. 2018;4 : eaao7005 19 January 2018
continuous optimization stage. The disadvantage of the continuous op-
timization step is that the objective function for the microstructure
parameters is highly nonconvex and has many local optima (27). The
discrete stochastic stage overcomes the limitation by introducing dis-
crete structural changes, which allows us to explore different local
optima. Note that the discrete sampling is not as efficient as the contin-
uous optimization algorithm in approaching local optima. A discrete
change often makes a structure suboptimal. These trade-offs between
discrete and continuous sampling algorithms lead us to believe that
the interleaving of the two algorithms is necessary for general noncon-
vex material optimization problems. For different objectives and
physical phenomena, the details of each step should be modified to in-
corporate domain knowledge.

In the second step, we identify common geometric traits amongmi-
crostructures near the gamut boundary. As mentioned above, the mi-
crostructure design problem is nonconvex, with many different
microstructures achieving similarmaterial properties. To findmeaning-
ful similarities among structures, we first need to separate structures
with distinct geometric features into different families. One naive ap-
proachwould be to treat thematerial assignment of eachmicrostructure
as a feature vector and use an off-the-shelf clustering algorithm. How-
ever, as our preliminary study showed us, the resulting clusters are un-
satisfactory because they include structures with different topological
features while excluding structures that should be included. This is
expected because structures with the same topologymay seem very dis-
tant when compared to each other using a per-voxelmaterial difference.
Therefore, we use a nonlinear dimensionality reduction (NLDR) to plot
the microstructures in a low-dimensional embedding space where
topologically similar structures are arranged more closely. We chose
Isomap (28) as the reduction method because it can discover long
sequences of related structures while keeping distant points well
separated. The effectiveness of NLDR depends on the distance metric
that measures the geometric difference. A smoothed Euclidean norm is
chosen for robustness (fig. S1). NLDR outputs an embedding of themi-
crostructures in a low-dimensional space where similar structures are
tightly packed. Microstructures in the embedding space are clustered
using a Gaussian mixture model (29) where each cluster corresponds
to a family. Families with a significant number of members (>200)
are extracted for further analysis.

The third step constructs templates for each microstructure family.
A template represents a class of structures that can be generated by vary-
ing continuous template parameters instead of editing per-voxel
material assignments. Because templates are analytical expressions, they
Identify familiesEstimate gamut Fit templates Reduce parameters

Skeleton

Principal 
directions

Family
representative

Fitted 
structureEmbedding space

Fig. 1. A computational process for the discovery of extremal microstructure families. Given a set of physical properties and design constraints, we estimate the
material property gamut using stochastic sampling and topology optimization. Structures near the gamut boundary are grouped into families using NLDR. A representa-
tive from each family is fitted with a template represented as a skeleton. Beams are placed on the skeleton edges with optimized parameters to fit the original structure.
Structure variations with the same topology can be generated by varying the beam parameters. Finally, reduced template parameters are computed to reveal domain-
specific design principles.
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can be voxelized at different grid resolutions. A template for a family
should be able to reproduce all the structures in the family it belongs
to by varying its template parameters. In addition, a compact represen-
tation can reveal common design patterns within a family. Theoreti-
cally, one could use volumes bounded by polynomial surfaces as a
very general type of building block for the templates. However, for this
problem, such a general formulation adds unnecessary complexity to
finding simple template expressions. Because most of the extremal
structures appear to be composed of beams, plates, and blocks, we chose
cuboids with different side lengths as building blocks for the micro-
structure templates. We note that some structures near the boundary
do not fit the cuboid representation (fig. S2), but this is not a fundamen-
tal limitation because our modular software pipeline can be easily
extended to use other types of geometric building blocks such as
generalized cylinders and curved cuboids. To find a template from a
family representative, we compute its topology using a morphological
skeleton (30). The morphological skeleton is a set of connected voxels
that largely preserves topological and branching characteristics of the
structures (fig. S3). The skeleton is converted into a graph to represent
a template. A cuboid is placed on each edge of the graphwith optimized
sizing and orientation to best match the representative structure. More
details of the process are available in the Supplementary Text.

Finally, our algorithm computes reduced parameters to allow an
intuitive navigation in the material property space. The output from
the previous step is a template parameterized by tens of parameters.
These parameters control geometric features, such as beam thick-
nesses and orientations, but they do not directly control the material
properties of the structures. Therefore, it is still difficult to understand
the fundamental design principles that affect the material properties.
This step computes reduced parameters that allow direct edits of the
material properties by varying all the relevant geometric features si-
multaneously. This step proceeds by computing template parameters
for each structure in each family. To avoid outliers, we exclude micro-
structures with too large fitting errors (>5% voxel difference). Princi-
pal component regression (PCR) is then performed on the set of fitted
template parameters to find principal directions in the template
parameter space. Varying the template parameters in a principal di-
rection corresponds to moving on the gamut boundary in a specific
direction. A reduced parameter is assigned to each direction to control
the amount of change in that direction. Using this representation, en-
gineers or automatic algorithms can select extremal structures by only
varying the reduced parameters. The final output of our system is a set
of templates tunable by reduced parameters. The templates produced
in our experiments are included in the SupplementaryMaterials in the
form of functions that take in reduced parameters and output micro-
structures at desired resolutions.
RESULTS AND DISCUSSION
The results of this study focus on elastic material properties: Young’s
modulus, Poisson’s ratio, and shearmodulus. The elasticmaterial prop-
erty gamut is estimated from 15,000 3D cubic-symmetric microstruc-
tures at a voxel resolution of 643. The voxel resolution is a power of 2
because that is necessary to achieve optimal performance of our multi-
grid finite element method (FEM) simulation. The specific resolution
643 is chosen because it is sufficient for discovering auxetic structures
with awide range of relative shearmodulus, whereas 323 structures can-
not achieve comparable complexity or property ranges. The macro-
scopic elastic parameters of each microstructure are computed using
Chen et al., Sci. Adv. 2018;4 : eaao7005 19 January 2018
homogenization theory (31, 32) assuming periodic boundary
conditions (that is, the structure is repeated infinitely). Each micro-
structure consists of a per-voxel binary material assignment. Because
of manufacturing limits on the minimum feature sizes, sensitivity
filtering (27) is applied in the gamut sampling step to prevent the
structures from having overly thin features. Sensitivity filtering works
by applying a low-pass smoothing filter to the gradient of the 3D binary
image of the microstructure to force its material distribution to have
smooth variations. This results in a structure with coarser geometric
features such as thicker beams instead of many thin beams or
checkerboard patterns.

The computational bottleneck of the gamut sampling step is the
simulation of microstructures. In the current implementation, it takes
an average of 10 s to simulate the deformation of a multimaterial mi-
crostructure on a single graphics processing unit (GPU). Homogeniza-
tion takes twice the amount of time because it requires two simulations.
For other types of physical properties, such as thermal or electro-
magnetic properties, simulation is as costly as elastic properties. Because
of the computational cost of simulation, we will still need efficient
sampling algorithms to explore material property gamut of other
physical properties.

Here, we report a deeper analysis on the auxetic structures present
in the gamut, which are significantly more complex than families with
positive Poisson’s ratios (fig. S4). Five families with significant
numbers of members (Fig. 2B) were discovered using three Isomap
embedding dimensions. We confirmed that Isomap associates seem-
ingly distant structures through intermediate structures. For example,
structures 5-1 and 5-3 from family 5 have very different beam thick-
nesses resulting in large geometric distances. However, the embedding
reveals that there is a sequence of structures like 5-2 that make the
connection between them.

Our system constructed parametric templates of all the five fa-
milies. The initial topology of the templates is extracted from mor-
phological skeletons (Fig. 3B). Although the topologies are visually
complex, they are generated by mirroring a small number of beams
(highlighted in red) reflected according to cubic symmetry (table S1).
The most complex template 5 contains only six control beams. The
five families cover similar ranges of Young’s moduli and Poisson’s
ratios while spanning different ranges of shear moduli. Inspired by
classical linear elasticity theory, we analyzed the shear modulus ratios
of the microstructures defined as

G′ ¼ 2Gð1þ nÞ
E

where G is the shear modulus, E is the Young’s modulus, and n is the
Poisson’s ratio of the metamaterial. For traditional isotropic materials,
the theoretical ratio is one. A low ratio indicates low resistance to shear
deformation. For auxetic materials, lower ratios are much easier to ob-
tain than higher ones. Even with foam structures assumed to be iso-
tropic, experimental data from previous work indicate that the ratio
is less than one (33).

Template 1 shown in fig. S5A resembles the conceptual sketch by
Lakes (18) andbelongs to the reentrant class of geometry. The difference
with our template is that the latter has only two beams mirrored by cu-
bic symmetry, whereas Lakes’ sketch contains three beams (fig. S5B). In
addition, using Lakes’ conceptual template as an initial configuration,
our topology optimization algorithm could not optimize it toward a
3 of 7
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Fig. 2. Five auxetic microstructure families identified by our software. (A) Structures with similar properties in the gamut are selected to study their commonalities.
Our software embeds the structures using NLDR. (B) The auxetic families are plotted in the embedding space numbered from 1 to 5. Families with similar topologies are
located closer in the embedding space. Three example structures from family 5 show the underlying connection between seemingly distinct structures through gradual
morphing of shape.
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Fig. 3. Sampled coverage of microstructure templates in the gamut. (A) Extracting a skeleton (middle) from a representative structure (top). The skeleton represents the
topology of the structure. A beam network is derived from the skeleton by placing a cuboid on each edge of the skeleton. Because we enforce cubic symmetry, the beams in a
single tetrahedron determine the entire beamnetwork. A template cangenerate a new structure (bottom) that approximates the original structure. (B) Coverage of each template
in the material property space. (C) Reducing template parameter dimensions with PCR. The first two reduced parameters approximately correspond to varying the Young’s
modulus and Poisson’s ratio of a structure.
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structure with a shear modulus ratio higher than 0.12. We note that
Lakes’ template is intended as a conceptual design for explaining auxetic
structures.His earlywork does not aim to provide full control over other
elasticity parameters. Template 1 is the most straightforward auxetic
template that we identified, because our microstructure database does
not include any single-beam auxetic structure. The shear modulus ratio
of this family falls between 0.07 and 0.24, which is the lowest range
among all five families. Templates 2 and 3 are similar to each other
and differ by a diagonal beam located in the face center (highlighted
in green in template 3). Because their geometric difference is small, they
are adjacent in the Isomap embedding space. The central beam is re-
sponsible for increasing the shear modulus of the structures. For
structures with n around −0.5, the additional beam increases the max-
imum shear modulus ratio from 0.34 to 0.90. Templates 4 and 5 also
differ by a single beam. Even the most complex template 5 is optimized
from a simple cube frame through our continuous optimization step, as
shown inmovie S1. The additional beam in template 5makes the family
stiffer overall. Both families can achieve shear modulus ratios greater
than 1 for n < −0.5.
For each family, principal directions of template parameters are
extracted using PCR. The template definitions are included in the Sup-
plementary Materials. Each template is represented as a function that
maps from two reduced parameters to a microstructure. We kept two
principal directions to tune the Young’s modulus and the shear
modulus.Wemade some observations by varying the parameters along
these directions. For families 2 and 3, the thickness of the slanted col-
umn (Fig. 4A, highlighted in red) is crucial for controlling the Poisson’s
ratio. More specifically, the Poisson’s ratio increases quickly when
increasing the beam thickness. For families 4 and 5, the thickness of
the rotating triangle affects the trade-off between the Young’s modulus
and the shearmodulus (fig. S6). The effect of varying the reducedparam-
eters for family 4 is shown in movie S2.

Although our cuboid-based templates have very few parameters,
they are sufficient for replicating the auxetic behavior of the
corresponding families.We validated the auxetic properties of the fitted
microstructures using numerical simulation. The templates provide an
efficient way for sampling new structures by varying the reduced param-
eters. We sampled 300 new structures from each family along the two
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main PCR coordinate directions. The coverage of the templates in the
microstructure gamut (Fig. 2B) shows that they can effectively gener-
ate microstructures on the gamut boundary.

So far, all our simulations were carried out assuming linear elasticity,
which is only accurate for infinitesimal deformations.We also made the
common assumption that there is no self-collision, which imposes a lim-
it on the maximum compressive strain applied to the structures before
self-collision occurs. Representative structures from families 4 and 5
have the lowest limit at 7% compressive strain. In practice, nonlinear
deformations, such as bending and rotation, are prevalent in our auxetic
structures. These deformations can cause linear elasticity to incorrectly
predict significant volume expansion of rotating parts (up to 20%expan-
sion in our test cases). Thus, we tested our structures using a nonlinear
deformation model to understand their behavior under large deforma-
tions. We simulated the nonlinear deformation behavior using a neo-
Hookean material model (34). Up to a maximum allowed strain of
7%, the linear elasticity and the neo-Hookean model are still in
acceptable agreement with an average error of 16% in the computed
Poisson’s ratios. In addition to performing simulations, we also
manufactured three example structures from each family with different
Young’smoduli andmaterial ratios.All the structureswere printed using
a single elastic material. Our structures demonstrated consistent auxetic
behaviors (movie S3), although they were optimized using the linear
elasticity assumption. It is noteworthy that our structures do not rely
on structural instabilities (35) to gain their auxetic behavior and that they
shrink uniformly as the applied load increases. This means that their de-
formations consistently follow the same pattern for different trials.

Our process automatically discovered two types of auxetic mechan-
isms: slanted columns and rotating triangles (Fig. 4). The slanted col-
umn transforms vertical compression to horizontal motions. The
rotating triangles transform vertical compression into a winding defor-
mation that pulls the right end of the mechanism toward the center of
the microstructure. Their motions are shown in movie S3. The rotating
triangle mechanism bears resemblance to existing 2D structures (36)
known as chiral structures (fig. S6D). 3D chiral structures have been
shown to exhibit extraordinary effects such as negative effective com-
pressibility and twisting under compression (37, 38). Extension of chiral
structures to 3D cubic structure with large shear modulus has never
been reported before. Unlike traditional design approaches, our
algorithm discovers these mechanisms entirely automatically without
imposing any artificial geometric restrictions—all microstructures are
Chen et al., Sci. Adv. 2018;4 : eaao7005 19 January 2018
built from hexahedral voxels. To inspire future applications of these
mechanisms,we report their loadingbehavior.These auxeticmechanisms
are the most active parts in the microstructures. They act like joints that
connect the more rigid scaffolding in microstructures. Because of this,
they undergo the most deformation and concentrate a large amount of
stress. For the rotating triangles, the stress is concentrated on the con-
nections around the triangle. We computed the maximum principal
strain in the structure with respect to the vertical compressive loading
to provide insights into the strength of the block. At the maximal com-
pressive loading (7%), the maximum principal strain in the structure is
7%. Calculation using a reported Young’s modulus of 80 MPa yields a
vonMises stress of 6.72MPa (Fig. 4E), whereas our print material has a
reported strength of 8.5 MPa. The printed structures are approaching
the strength limit under the load. Because the available material is rela-
tively weak even compared to conventional materials such as acrylonitrile
butadiene styrene (ABS) plastics and rubber, we believe that structural
strength can be improved significantly with futuremanufacturingmaterials.
CONCLUSION
We have shown a computational method that combines discrete
sampling, continuous optimization, and dimensionality reduction
methods for automatic discovery of new microstructure families and
mechanisms that would have been challenging to design manually.
The discovered structures are suitable for manufacturing because they
avoid thin features and distribute deformation over beams instead. They
also span a wide range of shear moduli, allowing engineers to balance
between different macroscopic properties. Although our case study
focuses on elastic material properties, the technique may be applied
to other physical properties whenever predictive simulation exists.
Our computational pipeline paves the way to the discovery of structures
that balancemechanical, thermal, optical, acoustic, and electromagnetic
properties. Moreover, it advances the understanding of underlying me-
chanisms that are key to extremal properties.
MATERIALS AND METHODS
Simulation of elasticity
We used a FEM with linear hexahedral elements to simulate the elastic
behavior of themicrostructures. Themacroscopic behavior of a structure
was computed using homogenization theory (22) assuming an infinite
A

B D

Slanted 
column

Rotating
triangle Rest shape Joint rotation

EC Sites with stress
concentration

Vertical displacement (%)

St
ra

in
 c

on
ce

nt
ra

tio
n 

(%
)

D

Fig. 4. Discovered auxetic mechanisms. Two mechanisms capable of producing auxetic behavior are discovered from our microstructure families. (A) The slanted column
transforms vertical stress into horizontal displacement. (B) The rotating triangle mechanism pulls the outer tip of the joint toward the center of the structure, reducing the
macroscopic volume. (C) Relationship between vertical strain and rotation of the triangle joint. (D) The rotation is observed in printed samples under vertical load. (E) Stress
is concentrated at the lower end of the triangle joint.
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tiling of identical structures (periodical boundary condition). The
material parameters of themicrostructures were computed in the context
of linear elasticity. Despite only being valid for small deformations, the
linear elasticity assumption allows more efficient computation of the
parameters. It also prevents issues related to structural instability such
as buckling. For validation, we used a neo-Hookean material model to
simulate and compare our microstructures to real experiments. For both
linear and nonlinear simulations, most of the computational power was
spent solving a linear system of the form Ku = f, where K is the stiffness
matrix modified to account for the periodic boundary conditions. The
linear system was solved using a GPU implementation of a geometric
multigrid preconditioned conjugate gradient algorithm inspired by pre-
vious work (39). At a very high level, geometric multigrid algorithms
work by merging neighboring elements into coarse voxels to quickly
estimate solutions. They work best when the grid resolution is a power
of 2. We chose 643 as our grid resolution because it is the minimum res-
olution required to arrive at the auxetic structures reported here. Our
simulation took an average of 12 s on a Titan Z GPU. Two simulations,
including stretching and shearing, were needed to compute the macro-
scopic elastic parameters of a cubic symmetric microstructure (Young’s
modulusE, Poisson’s ration, and shearmodulusG).Weuse a softmaterial
to simulate empty space. The Young’smodulus of the softmaterial is cho-
sen to be 5 × 10−5 relative to the Young’s modulus of the solid material.

Continuous optimization of microstructure
Continuous optimization is one of the two methods used for sampling
the microstructure gamut. It assigns a continuous “density” variable to
each cell that represents the ratio of stiffness material. For extension to
multiple materials, we can assign multiple variables representing the
mixture ratio of different materials. We used the SIMP (solid isotropic
material with penalization) scheme to interpolate the linear elasticity
material properties (24). For a cell with density x, its stiffness matrix
K(x) is computed by interpolating the stiffness matrices of the soft
and the stiff material using a constant exponent c.

KðxÞ ¼ ð1� xcÞKsoft þ xcKstiff

We set c = 3 in our experiments. The linear tensor of elasticity C(x)
of a microstructure with a continuous material assignment x can be
computed using homogenization theory (33). Here, we computed six
vertex displacements ui under periodic boundary conditions (stretch
and shear along three axes). For cubic-symmetric structures, only two
displacement fields, a stretch and a shear, need to be simulated. The rest
can be obtained by permuting spatial coordinates. The elasticity tensor
C(x) is given by

CijðxÞ ¼ uTi KðxÞuj

The material properties p(x) include Young’s modulus, Poisson’s
ratio, shear modulus, and total density. The first three properties are
functions of the elasticity of C, and the last property is the sum of x
across all cells in a microstructure grid. Because we are interested in
softer structures, Young’s modulus and shear modulus are represented
in the log space.

Given a discretemicrostructure and itsmaterial properties p, the lev-
el set gamut tells us the direction toward the exterior of the known gam-
ut (26). We move along the direction for a fixed distance to arrive at a
target material property p̂. Our objective is to move the current micro-
Chen et al., Sci. Adv. 2018;4 : eaao7005 19 January 2018
structure toward the target by changing its continuous material
distribution. We use a quadratic objective function

f ðxÞ ¼ 1
2
∑iwiðpiðxÞ � p̂iÞ2

0≤ xj ≤ 1

Note that the density variable on each cell has a bound constraint
between 0 and 1. This bound-constrained nonlinear least squares pro-
blem can be solved using gradient-based optimization algorithms. We
derived the analytical gradient (sensitivity) of the objective function
with respect to x. Each term in the gradient takes the form

wiðpiðxÞ � p̂iÞ
∂piðxÞ
∂x

The elasticity parameters depend on displacement vectors ui com-
puted from the homogenization step. For a material property p(x) re-
lated to the linear elasticity tensor C(x), it is further expanded as

∂pðxÞ
∂x

¼ ∂pðxÞ
∂Cij

uTi
∂KðxÞ
∂x

uj

We use the method of moving asymptotes (MMA) (40) to optimize
the objective to reach local minima. MMA usually converges within 30
steps. We runMMA until either convergences or reaching a maximum
of 50 steps. Because our experiments used cubic-symmetric structures,
the continuous optimization effectively optimized material distribution
inside 5984 cells instead of 643 cells. Note that the objective function
applies to general domains without any symmetry assumptions. Re-
moving the symmetry constraint would allow us to samplemore classes
of structures at the cost of more computation time. At the end of the
continuous optimization, the structure was converted back to a discrete
structure by thresholding. Because our goal was to explore more
structures, we thresholded at several density values instead of a single
value to obtain multiple structures from an optimization. In the
experiments, the thresholds were 0.1 to 0.5 with an interval of 0.1.

Fabrication and measurement
Three structures with different material properties from each family
were printed to verify our simulation (table S2). All structures were
printed using an EOS SLS printer with a PEBA2301 elastic material.
The printer required a minimum feature size of 0.9 mm for wire dia-
meters and 0.8 mm for wall thicknesses. To satisfy the printing con-
straints, we scaled each cell to a side length of 2.54 mm. Simpler
structures from families 1 to 3 were printed using a 2 × 2 × 2 grid ar-
rangement, whereasmore complex families are printed using a 3 × 3 × 1
arrangement to allow support material to escape. The base printing
material was measured using an Instron 5944 with tensile tests instead
of compression tests, because a solid block of base material was too stiff
for our equipment. The Poisson’s ratio was measured using a video
camera fixed on the test machine (fig. S7). Although all samples were
printed using the same printer and the same materials, the Young’s
modulus of the prints was highly variable. More specifically, the stiffest
sample had a Young’s modulus that was twice as high as the one of the
softest samples. On the other hand, the Poisson’s ratio of the base print
material was measured to be 0.344 and had a much lower variance of
6 of 7
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0.02 in the sample set. The 3D structures were measured using a com-
pression test at a speed of 2 mm/min with a maximum strain of 6 mm.
The compression plates were lubricated with oil to reduce friction. Sig-
nificant variance in Poisson’s ratiowas observed due to several factors in
manufacturing andmeasurement. An additional challenge was that the
printer did not reliably reproduce the geometry specified by input files.
In practice, the printed models were thickened by 0.1 to 0.4 mm, which
is significant compared to the thinnest feature size in our microstruc-
tures. The thickening stiffened the joints and reduced Poisson’s ratios.
The effect was exacerbated by incomplete support removal. The support
material was the same as the printmaterial in powder form, which stuck
to the print easily especially around hard-to-reach internal corners. We
believe that the discrepancy can be reduced in the future by using more
precise printing technologies with soluble support material.
http://advances.sci
D
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